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Abstract

Background: There is still room for improvement in the modified LEMON (look, evaluate, Mallampati, obstruction, neck
mobility) criteria for difficult airway prediction and no prediction tool for first-pass success in the emergency department (ED).

Objective: We applied modern machine learning approaches to predict difficult airways and first-pass success.

Methods: In a multicenter prospective study that enrolled consecutive patients who underwent tracheal intubation in 13 EDs,
we developed 7 machine learning models (eg, random forest model) using routinely collected data (eg, demographics, initial
airway assessment). The outcomes were difficult airway and first-pass success. Model performance was evaluated using c-statistics,
calibration slopes, and association measures (eg, sensitivity) in the test set (randomly selected 20% of the data). Their performance
was compared with the modified LEMON criteria for difficult airway success and a logistic regression model for first-pass
success.

Results: Of 10,741 patients who underwent intubation, 543 patients (5.1%) had a difficult airway, and 7690 patients (71.6%)
had first-pass success. In predicting a difficult airway, machine learning models—except for k-point nearest neighbor and multilayer
perceptron—had higher discrimination ability than the modified LEMON criteria (all, P≤.001). For example, the ensemble method
had the highest c-statistic (0.74 vs 0.62 with the modified LEMON criteria; P<.001). Machine learning models—except k-point
nearest neighbor and random forest models—had higher discrimination ability for first-pass success. In particular, the ensemble
model had the highest c-statistic (0.81 vs 0.76 with the reference regression; P<.001).

Conclusions: Machine learning models demonstrated greater ability for predicting difficult airway and first-pass success in the
ED.

(Interact J Med Res 2022;11(1):e28366) doi: 10.2196/28366
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Introduction

In the emergency department (ED), achieving successful tracheal
intubation at the initial attempt (ie, first-pass success) is essential
[1]. The literature has shown that repeated intubation attempts
are associated with a higher rate of adverse events [2-4].
However, recent studies have also reported first-pass success
rates of 74%-84% in the ED [5,6], suggesting that there are still
occasions where repeated intubation attempts are required. To
improve ED airway management, the development of effective
risk stratification and prediction tools is instrumental.

A widely used prediction tool for difficult airway is the modified
LEMON (look, evaluate, Mallampati, obstruction, neck
mobility) criteria [7], which has been validated [8]. Although
the criteria have good prediction ability (eg, sensitivity 86%,
specificity 48% for direct laryngoscope) [8], there remains room
for improvement. Besides, no prediction tool accurately predicts
first-pass success (or failure) in the ED. The recent advent of
machine learning approaches has enabled clinicians and
researchers to accurately predict various diseases and conditions,
such as sepsis [9], acute asthma [10], and ED triage [11,12].
Compared with conventional prediction tools and regression
approaches, modern machine learning approaches have several
advantages, such as incorporating high-order, nonlinear
interactions between predictors and mitigating overfitting [13].
Despite the clinical and research importance, no study has yet
applied modern machine learning approaches to predict a
difficult airway in advance of preparing for airway management
or to predict first-pass success once the intubation strategy has
been determined in the ED.

To address this significant knowledge gap in the literature, using
data from a prospective, multicenter study of ED airway
management, we aimed to develop machine learning models
that accurately predict difficult airway and first-pass success
and to compare their performance with conventional approaches.

Methods

Study Design, Setting, and Participants
This study analyzes data from a multicenter, prospective study
of emergency airway management—the second Japanese
Emergency Airway Network (JEAN-2) study. The details of
the study design, setting, participants, methods of data
measurement, and definitions of variables have been reported
elsewhere [14]. In brief, the JEAN-2 study is a consortium of
13 academic and community EDs, including 10 level I and 3
level Ⅱ equivalent trauma centers. These EDs are located in
different geographic regions across Japan. The median ED
census is 29,000 patients per year (range of 16,000 to 67,000
annual visits). These ED are affiliated with an emergency
medicine residency training program. Attending physicians or
resident physicians who are under the supervision of the
attending physician perform intubations. In this observational
study, patients were managed at the discretion of treating
physicians. The institutional review board at each participating
center approved the waiver of informed consent before data
collection. This study used data from consecutive (both children
and adults) patients who underwent ED management at one of

the participating EDs from January 1, 2010 through December
31, 2018. Patients who underwent surgical intubations at the
first attempt were excluded.

Outcomes
The outcomes of interests were difficult airway and first-pass
success. According to the American Society of Anesthesiologists
(ASA) guidelines, a difficult airway was defined as multiple
intubation attempts by emergency physicians or
anesthesiologists according to the ASA guidelines [15].
First-pass success was defined as intubation success at the initial
attempt of each encounter [16]. Intubation success was defined
as the proper placement of a tracheal tube through the vocal
cord, confirmed by the use of quotative or end-tidal CO2

monitoring [17]. An intubation attempt was defined as a single
insertion of the laryngoscope past the teeth [18].

Predictors of Machine Learning Models
To develop machine learning models for the difficult airway
outcome, we used the following variables that are routinely
obtained in advance of the actual intubation attempt: patient
demographics (age, sex, estimated height and body weight,
BMI), components of the modified LEMON criteria,
pre-intubation vital signs (pulse rate, systolic blood pressure,
respiratory rate, oxygen saturation), and Glasgow coma scale.
To develop models that predict the first-pass success outcome
(once the intubation strategy has been determined), we used all
available intubation-related information—in addition to the
aforementioned predictors—such as type of day
(weekend/weekday), medications, intubation methods, intubation
devices, intubator’s post-graduate year, and intubator’s specialty.

Statistical Analysis
Summary statistics were used to describe the characteristics of
patients and airway management. After performing imputations
for missing continuous variables (most predictors had <10%
missingness; Multimedia Appendix 1) using random forest [19],
we conducted predictor preprocessing, such as one-hot encoding
(ie, creation of dummy variables), normalization, and
standardization. The nonlinear predictors included in the
developed models were age, body weight, height, BMI, and
pre-intubation vital signs. In the training set (80% random
sample), for each outcome, we developed 7 machine learning
models: (1) logistic regression model with elastic-net (penalized
logistic regression) [20], (2) random forest [21], (3) gradient
boosting decision tree [22], (4) multilayer perceptron [23], (5)
k-point nearest neighbor [24], (6) XGBoost [25], and (7)
ensemble model (ridge regression and the random forest with
an equal weight) [26]. For the difficult airway outcome, the
modified LEMON criteria model was used as the reference
model. For the first-pass success outcome, a (nonpenalized)
logistic regression model was used as the reference model. We
performed stratified 5-fold cross-validation to determine the
optimal hyperparameters with the highest c-statistic (ie, the area
under the receiver operating characteristic [ROC] curve).

In the test set (the remaining 20% of the random sample), we
measured the performance of reference and machine learning
models. We estimated the c-statistic of each model and
examined the following association measures: sensitivity,
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specificity, positive and negative predictive values, and positive
and negative likelihood ratios. The c-statistic is the probability
that, given 2 individuals (one who experiences the outcome of
interest and the other who does not), the model estimates a
higher probability for the first patient than for the second [27].
We determined the threshold of perspective prediction (cut-off)
results based on the ROC curve from the Youden method [28].
For the model with the highest c-statistic among the 7 machine
learning models, we computed the variable importance—how
strongly each of the predictors improved the c-statistic. We also
examined calibration plots of the best-performing machine
learning model for each of the outcomes. Data were analyzed
using python (version 3.7.3) and R (version 3.6.2). Two-sided
P values <.05 were considered statistically significant.

Results

Patient Characteristics
During the 108-month study period, the JEAN-2 study recorded
data for 10,816 patients (capture rate, 96%) who underwent
emergency airway management at one of the 13 participating
EDs. Of these, 75 patients who underwent surgical intubation
at their first attempt were excluded; the remaining 10,741
patients comprised the analytic cohort. The patient
characteristics, details of airway management, and intubation
outcomes are shown in Table 1. The median age was 71 (IQR
56 -81) years, 2.8% (304/10,741) were children, and 38.0%
(4079/10,741) were female. Overall, 5.1% (543/10,741) of
patients had a difficult airway outcome, while 71.6%
(7690/10,741) had first-pass success. An aborted intubation
attempt occurred for 39 patients.

Table 1. Patient characteristics, airway management, and outcomes in 10,741 patients who underwent tracheal intubation in the emergency department.

ResultsVariables

71 (56-81)Age (years), median (IQR)

304 (2.8)Children ( 18 years), n (%)

4079 (38.0)Female gender, n (%)

160 (153-170)Estimated height (cm), median (IQR)

60 (50-67)Estimated body weight (kg), median (IQR)

22.0 (19.5-24.3)BMI (kg/m2), median (IQR)

Primary indication, n (%)

3785 (35.2)Medical cardiac arrest

438 (4.1)Traumatic cardiac arrest

5440 (50.6)Medical indication

289 (2.7)Airway problem (eg, obstruction)

1673 (15.6)Breathing problem (eg, respiratory failure)

1080 (10.1)Circulation problem (eg, shock)

2036 (19.0)Altered mental status

360 (3.4)Others

1080 (10.1)Traumatic indication

Modified LEMONa criteria, n (%)

583 (5.0)Look externally

3620 (33.7)3-3-(2) rule

774 (7.2)Obstruction

1101 (10.3)Neck mobility

4709 (43.8)Any criterion met in the modified LEMON criteria

Intubation outcomes, n (%)

543 (5.1)Difficult airway

7690 (71.6)First-pass success

aLEMON: look, evaluate, Mallampati, obstruction, neck mobility.
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Prediction Performance for Difficult Airway Outcomes
Table 2 summarizes the performance of the modified LEMON
criteria (reference) and 7 machine learning models when
predicting a difficult airway outcome in the ED. Compared with
the modified LEMON criteria, the discrimination ability of
machine learning models—except for the k-point
nearest-neighbor model and multilayer perceptron model—were
significantly greater (P≤.001). Among the 7 machine learning
models, the ensemble model had the highest c-statistic (0.74,
95% CI 0.67-0.79; Figure 1A), with a sensitivity of 0.67 (95%
CI 0.65-0.69), specificity of 0.70 (95% CI 0.68-0.72), positive

predictive value of 0.09 (95% CI 0.08-0.11), and negative
predictive value of 0.98 (95% CI 0.97-0.98). Compared with
the modified LEMON criteria, which had a specificity of 0.57
(95% CI 0.56-0.58), all machine learning models had higher
specificity, with the multilayer perceptron model achieving a
specificity of 0.92 (95% CI 0.90-0.93). The calibration plot
(Figure 2A)—which indicates how far the predicted risk from
the ensemble model deviated from the actual risk—showed that
the ensemble model overestimated the risk of the outcome,
while there was a positive relationship between the predicted
and actual risks, largely due to the class imbalance (ie, difficult
airway outcome occurred only in 5% of the sample).

Table 2. Performance of 7 machine learning models and modified LEMON (look, evaluate, Mallampati, obstruction, neck mobility) criteria when
predicting difficult airway outcome in the emergency department.

NLRe (95%
CI)

PLRd (95%
CI)

NPVc

(95% CI)
PPVb (95%
CI)

Specificity
(95% CI)

Sensitivity
(95% CI)P value

C-statistica

(95% CI)Models

0.57 (0.54-
0.61)

1.57 (1.48-
1.68)

0.97 (0.97-
0.97)

0.08 (0.07-
0.08)

0.57 (0.56-0.58)0.67 (0.66-0.68)Referencef0.62 (0.60-
0.64)

Modified LEMON
criteria (reference)

0.51 (0.43-
0.59)

2.05 (1.75-
2.40)

0.98 (0.97-
0.98)

0.09 (0.08-
0.10)

0.68 (0.66-0.70)0.66 (0.64-0.68)<.0010.73 (0.68-
0.79)

Penalized logistic
regression

0.84 (0.55-
1.29)

3.84 (2.50-
5.90)

0.97 (0.97-
0.98)

0.09 (0.08-
0.11)

0.74 (0.72-0.75)0.58 (0.56-0.60)<.0010.72 (0.67-
0.77)

Random forest

0.39 (0.35-
0.44)

1.84 (1.63-
2.08)

0.98 (0.98-
0.99)

0.08 (0.07-
0.09)

0.58 (0.56-0.60)0.77 (0.75-0.79).0010.72 (0.66-
0.77)

Gradient boost

0.89 (0.57-
1.38)

2.24 (1.44-
3.48)

0.96 (0.95-
0.97)

0.09 (0.08-
0.11)

0.92 (0.90-0.93)0.19 (0.17-0.20).140.57 (0.50-
0.63)

Multilayer percep-
tron

0.87 (0.67-
1.14)

1.30 (1.00-
1.68)

0.96 (0.95-
0.97)

0.06 (0.05-
0.07)

0.70 (0.68-0.72)0.39 (0.36-0.41).020.54 (0.49-
0.61)

K-point nearest
neighbor

0.52 (0.45-
0.61)

1.70 (1.47-
1.97)

0.98 (0.97-
0.98)

0.07 (0.06-
0.09)

0.60 (0.58-0.62)0.69 (0.67-0.71)<.0010.72 (0.67-
0.77)

XGBoost

0.48 (0.41-
0.56)

2.21 (1.89-
2.58)

0.98 (0.97-
0.98)

0.09 (0.08-
0.11)

0.70 (0.68-0.72)0.67 (0.65-0.69)<.0010.74 (0.67-
0.79)

Ensemble modelg

aC-statistic in the modified LEMON was evaluated using 95% CIs.
bPPV: positive predictive value.
cNPV: negative predictive value.
dPLR: positive likelihood ratio.
eNLR: negative likelihood ratio.
fComparison of the area under the curve of the reference model (modified LEMON) with that of each machine learning model using the DeLong test.
gEnsemble prediction model using these machine learning models (that combined ≥2 models).
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Figure 1. Discrimination ability of the ensemble model and logistic regression (reference) model in predicting intubation outcomes, including (A)
difficult airway outcomes and (B) first-pass success outcomes. mLEMON: modified look, evaluate, Mallampati, obstruction, neck mobility model.

Figure 2. Calibration plots of ensemble models in predicting intubation outcomes, including (A) difficult airway outcomes and (B) first-pass success
outcomes.

Prediction Performance for First-Pass Success
Outcomes
Table 3 summarizes the performance of the reference model
and 7 machine learning models when predicting the first-pass
success outcome in the ED. Compared with the reference model,
the discrimination ability of machine learning models—except
for the random forest and k-point nearest neighbor models—was
significantly higher (all P<.05). Among the 7 machine learning
models, the ensemble model had the highest c-statistic (0.81,

95% CI 0.79-0.83; Figure 1B). Compared with the reference
model, the ensemble model had a higher sensitivity (0.79, 95%
CI 0.77-0.81) and specificity (0.67, 95% CI 0.65-0.69), with a
PPV of 0.85 (95% CI 0.84-0.87) and NPV of 0.57 (95% CI
0.55-0.59). Compared with the reference model, which had a
specificity of 0.36 (95% CI 0.34-0.38), most machine learning
models had higher specificity, with the random forest model
achieving a specificity of 0.70 (95% CI 0.68-0.72). In the
calibration plot of the ensemble model (Figure 2B), the
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model-predicted probability was well-matched with the observed probabilities.

Table 3. Performance of 7 machine learning models and reference model when predicting first-pass success outcome in the emergency department.

NLRd (95%
CI)

PLRc (95%
CI)

NPVb (95%
CI)

PPVa (95%
CI)

Specificity
(95% CI)

Sensitivity
(95% CI)

P valueC statistic
(95% CI)

Models

0.26 (0.24-
0.27)

1.42 (1.33-
1.51)

0.61 (0.59-
0.63)

0.78 (0.76-
0.79)

0.36 (0.34-0.38)0.91 (0.89-0.92)(Reference)e0.76 (0.74-
0.78)

Logistic regression
(reference)

0.31 (0.27-
0.35)

2.59 (2.29-
2.92)

0.57 (0.55-
0.59)

0.86 (0.85-
0.88)

0.70 (0.68-0.72)0.79 (0.77-0.80).0010.81 (0.79-
0.83)

Penalized logistic re-
gression

0.35 (0.31-
0.39)

2.16 (1.94-
1.2.41)

0.54 (0.52-
0.56)

0.84 (0.83-
0.86)

0.64 (0.62-0.66)0.78 (0.76-0.79).120.78 (0.76-
0.81)

Random forest

0.19 (0.17-
0.20)

1.55 (1.45-
1.66)

0.69 (0.67-
0.71)

0.79 (0.77-
0.81)

0.40 (0.38-0.43)0.92 (0.91-0.94).0050.80 (0.78-
0.82)

Gradient boost

0.18 (0.17-
0.19)

1.64 (1.53-
1.76)

0.69 (0.67-
0.71)

0.80 (0.78-
0.82)

0.44 (0.42-0.46)0.92 (0.91-0.93).0020.81 (0.79-
0.83)

Multilayer perceptron

0.12 (0.11-
0.12)

1.19 (1.15-
1.24)

0.78 (0.76-
0.80)

0.74 (0.73-
0.76)

0.18 (0.16-0.20)0.98 (0.97-0.98).600.75 (0.73-
0.77)

K-point nearest neigh-
bor

0.15 (0.14-
0.16)

1.53 (1.43-
1.62)

0.73 (0.71-
0.75)

0.79 (0.77-
0.81)

0.38 (0.36-0.40)0.94 (0.93-0.95)<.0010.81 (0.79-
0.83)

XGBoost

0.31 (0.28-
0.35)

2.39 (2.13-
2.67)

0.57 (0.55-
0.59)

0.85 (0.84-
0.87)

0.67 (0.65-0.69)0.79 (0.77-0.81)<.0010.81 (0.79-
0.83)

Ensemble modelf

aPPV: positive predictive value.
bNPV: negative predictive value.
cPLR: positive likelihood ratio.
dNLR: negative likelihood ratio.
eComparison of the area under the curve of the reference model with that of each machine learning model using the DeLong test.
fEnsemble prediction model using these machine learning models (that combined ≥2 models).

Variable Importance
Table 4 shows the variable importance of the best performance
model (the ensemble model) for each outcome. For the difficult
airway prediction, the most contributing predictor was age,

followed by any criterion met in the modified LEMON criteria
and hyoid mental distance ≥3 fingers. For the first-pass success
prediction, the best contributing predictor was the use of
laryngeal pressure, followed by lifting force required for
laryngeal deployment and Cormack grade of 3.
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Table 4. Importance of each predictor of ensemble model when predicting difficult airway and first-pass success outcomes.

Δ c-statisticsaPredictors

Predictors for difficult airway outcome

0.093Age

0.093Any modified LEMONb criterion met

0.091Hyoid mental distance ≥3 fingers

0.084Interincisor distance of 3 fingers

0.080BMI

0.073Body weight

0.070>80 years old

0.053Hyoid mental distance of 2 fingers

0.049Airway obstruction

0.048Neck mobility

Predictors for first-pass success outcome

0.118Use of laryngeal pressure

0.108Lifting force required for laryngeal deployment

0.099Cormack grade of 3

0.094Any modified LEMON criterion met

0.094Cormack grade of 1

0.090Intubator’s post-graduation year of 1 or 2

0.077Neuromuscular blocking agent (rocuronium)

0.076Rapid sequence intubation

0.075Video laryngoscope (C-MAC)

0.074Video Cormack grade of 1

0.079Interincisor distance ≥3 fingers

aThe variable importance of a predictor is agnostic regarding the direction of the association.
bLEMON: look, evaluate, Mallampati, obstruction, neck mobility.

Discussion

Principal Findings
In this analysis of multicenter prospective data from 10,741 ED
patients, we applied modern machine learning models to predict
intubation-related outcomes in the ED. Specifically, compared
with conventional approaches (ie, modified LEMON criteria
and nonpenalized logistic regression model), most machine
learning models demonstrated superior discrimination
performance when predicting both difficult airway and first-pass
success outcomes. Additionally, these machine learning models
also achieved higher specificity when predicting these 2
outcomes. To the best of our knowledge, this is the first study
that has investigated the performance of modern machine
learning models when predicting clinically important intubation
outcomes in the ED setting.

Consistent with our findings, the following has been reported
as predictors for first-pass success in the ED: patient
characteristics (eg, restricted mouth opening, restricted neck
extension, and swollen tongue), high Cormack grade, intubators’
characteristics (eg, clinical experience and working department),

the use of rapid-sequence intubation, and the use of video
laryngoscope at the first attempt [6,29-31].

The importance of accurate prediction for difficult airways has
been emphasized in ED airway management [8]. Although the
modified LEMON criteria (and the LEMON criteria) have been
validated as an indicator for difficult airways, their prediction
ability is suboptimal for clinical use [7,8]. In the operating room
setting, a couple of studies have reported a potential benefit of
machine learning models for predicting difficult airways [32,33].
For example, in a single-center study of 80 patients, a deep
learning approach using data from the patients’ facial images
had high discrimination ability for difficult airways—defined
as multiple attempts by an intubator with at least 12 months of
anesthesia experience, grade 3 or 4 laryngoscopic view, need
for a second intubator, or nonelective use of an alternative
airway device [32]. Our multicenter study—with a sample size
that is many times larger than the prior studies on this
topic—builds on these earlier reports and extends them by
demonstrating that modern machine learning models outperform
conventional approaches for predicting intubation outcomes in
the ED.
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The observed improvement in prediction ability by machine
learning approaches may be explained by several reasons. First,
the machine learning approaches account for high-order
interactions between predictors and nonlinear relationships with
an outcome, which traditional modeling approaches cannot
address [34]. Second, the modified LEMON criteria may be too
parsimonious (ie, the use of a limited number of predictors),
while the applied machine learning models could use a larger
number of predictors. Third, the modern machine learning
approaches enabled us to minimize overfitting, such as lasso
and ridge penalizations (ie, elastic net model and
cross-validation). In addition to these strengths, modern machine
learning models also are scalable for further improvement by
integration with recently developed techniques such as image
analysis of patients’ faces and necks [32,35].

Although the machine learning models achieved a more
significant predictive ability, their performance remained
imperfect. This may be explained, at least partially, by the
limited set of predictors (eg, lack of detailed information on the
intubation competency and experience of each intubator) and
data measurement errors. Additionally, one may surmise that
the modified LEMON criteria are simpler and easier to use in
the ED. Despite the known trade-off between parsimonious
models and more complex models with a larger number of
predictors, the use of modern machine learning models has
advantages in the era of health information technology, including
automated data entry through voice recognition, natural language
processing, continuous sophistication of models through
sequential extractions of electronic health records, and
reinforcement learning [36,37]. Our findings and the recent
advent of machine learning approaches collectively support
cautious optimism that machine learning may enhance the
clinician’s ability—as assistive technology—to predict patient
outcomes in the ED. The resulting accurate prediction of
intubation outcomes has several important implications in airway
practice in the ED. For example, early identification of difficult
airways should help ED providers develop individualized and
optimal management strategies and prepare for rescue airways
[14,38]. Besides, the accurate estimation of the probability of
first-pass success given the conditions (eg, the airway
management strategies and intubator to be used) would not only
increase the opportunity for clinical training (eg, which patient
can be safely intubated by the intubator) but also improve patient
safety.

To implement our developed machine learning models, a
web-based application or integrated emergency department
information system is needed. The rapid development of health
information technology (eg, web-based artificial intelligence
application with the model) enables us to implement the
developed model into the real clinical setting. Furthermore, the
current models can be used not only for practice but as an
educational tool. For example, in simulation-based intubation
training, supervisors can evaluate the trainee’s intubation
strategy by indicating the actual probability of difficult airway
and first-pass success.

Limitations
Several potential limitations of this study should be noted. First,
our data may be subject to self-reporting and measurement bias
(eg, underreporting difficult airways). However, the study was
conducted by investigators using a standardized protocol [6],
which led to the high capture rate (96%) and low proportion of
missingness in the predictors and outcomes (Multimedia
Appendix 1). Second, we did not have detailed information on
the procedural competency of each intubator, as this factor is
also challenging to define and measure in real-world settings.
To address this issue, we used years of experience and specialty,
which are readily available in most ED settings, as a proxy for
the competency. Third, machine learning models have a
common limitation in the interpretability of models. Fourth,
because of the small samples of children (2.8%), our model
may not have optimal prediction ability in pediatric populations.
Finally, our models may not be generalizable to other practice
settings, although the study sample consisted of a geographically
diverse patient across Japan.

Conclusions
In summary, based on the extensive multicenter, prospective
data from 10,741 ED intubations, we developed modern machine
learning models to predict clinically essential intubation
outcomes. Using routinely available data as the predictors, we
found that the machine learning models had a greater ability to
predict difficult airways and first-pass success than conventional
approaches. Although formal validation is required, this study
lends support to the application of machine learning models for
the prediction of intubation-related outcomes, which will, in
turn, improve airway management practice and outcomes of
critically ill patients in the ED.
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