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Abstract

Background: Insufficient physical activity due to social distancing and suppressed outdoor activities increases vulnerability to
diseases like cardiovascular diseases, sarcopenia, and severe COVID-19. While bodyweight exercises, such as squats, effectively
boost physical activity, incorrect postures risk abnormal muscle activation joint strain, leading to ineffective sessions or even
injuries. Avoiding incorrect postures is challenging for novices without expert guidance. Existing solutions for remote coaching
and computer-assisted posture correction often prove costly or inefficient.

Objective: This study aimed to use deep neural networks to develop a personal workout assistant that offers feedback on squat
postures using only mobile devices—smartphones and tablets. Deep learning mimicked experts’ visual assessments of proper
exercise postures. The effectiveness of the mobile app was evaluated by comparing it with exercise videos, a popular at-home
workout choice.

Methods: Twenty participants were recruited without squat exercise experience and divided into an experimental group (EXP)
with 10 individuals aged 21.90 (SD 2.18) years and a mean BMI of 20.75 (SD 2.11) and a control group (CTL) with 10 individuals
aged 22.60 (SD 1.95) years and a mean BMI of 18.72 (SD 1.23) using randomized controlled trials. A data set with over 20,000
squat videos annotated by experts was created and a deep learning model was trained using pose estimation and video classification
to analyze the workout postures. Subsequently, a mobile workout assistant app, Home Alone Exercise, was developed, and a
2-week interventional study, in which the EXP used the app while the CTL only followed workout videos, showed how the app
helps people improve squat exercise.

Results: The EXP significantly improved their squat postures evaluated by the app after 2 weeks (Pre: 0.20 vs Mid: 4.20 vs
Post: 8.00, P=.001), whereas the CTL (without the app) showed no significant change in squat posture (Pre: 0.70 vs Mid: 1.30
vs Post: 3.80, P=.13). Significant differences were observed in the left (Pre: 75.06 vs Mid: 76.24 vs Post: 63.13, P=.02) and right
(Pre: 71.99 vs Mid: 76.68 vs Post: 62.82, P=.03) knee joint angles in the EXP before and after exercise, with no significant effect
found for the CTL in the left (Pre: 73.27 vs Mid: 74.05 vs Post: 70.70, P=.68) and right (Pre: 70.82 vs Mid: 74.02 vs Post: 70.23,
P=.61) knee joint angles.

Conclusions: EXP participants trained with the app experienced faster improvement and learned more nuanced details of the
squat exercise. The proposed mobile app, offering cost-effective self-discovery feedback, effectively taught users about squat
exercises without expensive in-person trainer sessions.

Trial Registration: Clinical Research Information Service KCT0008178 (retrospectively registered);
https://cris.nih.go.kr/cris/search/detailSearch.do/24006
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Introduction

A recent study on the relationship between physical activity
and the risk of COVID-19 has shown that engaging in the
recommended levels of physical activity decreases the likelihood
of SARS-CoV-2 infection, severe COVID-19 illness, and
COVID-19–related death [1]. However, social distancing and
lockdown after the outbreak of COVID-19 have resulted in a
vigorous decrease in physical activity [2]. Since such reduction
in physical activity could increase risks of not only COVID-19
but also cardiovascular diseases (eg, obesity, hypertension,
diabetes, and metabolic syndrome) and even sarcopenia [3-7],
physical activity is highly recommended during the confinement
through the performance of aerobic, strength, flexibility, and
balance exercises [8]. Body weight exercises, such as squats,
sit-ups, and push-ups, are some of the best options because they
are easy to perform at home without additional equipment and
involve various joints and muscle movements [9].

Maintaining proper posture is vital to reap meaningful benefits
from workouts. An incorrect posture can cause abnormal muscle
activation or apply unwanted pressure on the body’s joints,
leading to less effective session results or even injuries [10,11].
Unfortunately, avoiding incorrect postures is not an easy task
for nonexperts. It is difficult for people to view their own bodies
from an objective perspective, especially while exercising. A
widely accepted solution is to have someone else watch and
provide feedback. However, nonexperts often do not have proper
knowledge of correct postures, and hence, cannot provide
helpful feedback. But experts can provide valuable feedback
and increase the quality of workout sessions; however, they are
in short supply and are often expensive. Moreover, under the
current COVID-19 pandemic, in-person meetings and exercise
sessions should be avoided.

Remote coaching is one of the most effective solutions for this
problem. The recent surge in sales of home-fitness gear [12]
supports such a change in exercise trends. Some people purchase
equipment and subscribe to web-based services. For example,
Nike+ Kinect Training (Nike) [13] is a fitness game for Xbox
360 (Microsoft Corp) that uses Microsoft Kinect, a
depth-sensing camera device, and Weelo (Alyce Healthcare)
[14] is a web subscription service that analyzes training forms
using a laptop. Several studies have been conducted on
computer-assisted postural correction. For example, Chen et al
[15] built a system that analyzed workout posture using pose
estimation; however, they used geometric methods and dynamic
time warping using small amounts of data. Han et al [16]
proposed using deep neural networks to analyze skeleton data
extracted using Microsoft Kinect but did not actually show the
implementation of the results. All these systems either require
specific equipment or use heuristic methods that are difficult
to generalize.

Some of the recent studies used deep learning–based exercise
programs. Liao et al [17] developed a system that recognized
rehabilitation exercises and Soro et al [18] used the deep
learning model to classify several different exercises. However,
none of them provided feedback about correct postures. In
contrast, this study tried to imitate experts’ visual judgments
on correct exercise postures learned from years of experience
through deep learning, which is well-known for extracting
patterns from image and video data. Furthermore, while various
non–face-to-face exercise methods using apps or services
[12-16] have surged during the prolonged COVID-19 outbreak,
studies on the effects of these methods are insufficient.
Quantitative evaluations of posture correction and muscle
strength improvements are limited as most studies focus on the
qualitative effects of behavioral changes or weight loss [19].

This study aimed to use deep neural networks to design and
develop a personal workout assistant capable of providing
feedback on squat postures using only mobile devices such as
smartphones. In the first part of this study, a squat video data
set was created and a deep learning model using a combination
of pose estimation and video classification was trained to
analyze workout postures. In the second part, a mobile workout
assistant app was developed and an interventional study was
conducted to show how the app helps people improve squat
exercise, in contrast to simply following videos over the internet.

Methods

Part 1: Deep Learning Model

Data Collection
In the first part of the study, a squat posture data set was
collected from participants to train the neural network model
for a mobile app. Chosen participants were adults with no
diagnosed musculoskeletal conditions and no pain in the ankles,
knees, or lower back for the past 6 months. Those who could
not perform the normal range of motion (ROM) for
physiological reasons were excluded. A total of 52 participants
(36 men and 16 women) were recruited, comprising a mix of
24 novices with little or no experience doing squats and 28
experts with extensive knowledge of correct workout postures.
After receiving sufficient explanation about the experiment,
participants signed a consent form. Each participant performed
less than 100 squats in a single session and less than 200 squats
in a single day, with sufficient breaks in between to minimize
fatigue and possible injuries. Each participant performed an
average of 400 squats, with each squat recorded individually.
A Microsoft Kinect One was placed in front of the participant
at a distance of 2.5 m and height of 0.95 m to capture the depth
and red green blue (RGB) images; a laptop was placed at a
distance of 3.8 m and height of 1.1 m to capture RGB images
in a diagonal direction using its webcam (Figure 1). Both devices
recorded at 30 fps. The EyesWeb program was used to
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synchronize the recording devices. Three workout experts were
present during the recording to determine the correctness of
each squat. Any disagreements were resolved by reviewing the

video recordings. The problematic body parts were later labeled
by experts through video analysis.

Figure 1. Camera placements during data collection. RGB: red green blue.

Data Preparation
Of the collected data, only RGB videos recorded from the front
were used to train the deep learning model in this study. This
section describes the preprocessing steps performed to transform
the videos into trainable data.

The videos recorded from the front camera were trimmed to
accelerate the pose estimation process. OpenPose [20] was used
to extract 2D skeleton key points from the videos, but only a
certain portion of the output (see Figure 2) was used as some
parts of the body, such as arms, head, and feet, do not have a
significant impact on the correctness of the squat posture.

To normalize the key point data, a reference frame was selected
from the early portion of the videos to ensure the highest chance
that the target was upright and standing straight. Once the
reference frame was chosen, a transform matrix that would map
the coordinates of the hip joint key point to (0, 0) and the length

of the torso to 1 in the reference frame was found and uniformly
applied to all frames, ensuring that the coordinates of the key
points would fall within a similar bound of values, thus
normalizing data points from individuals with different heights.
To mitigate the inevitable errors from pose estimation, a
Gaussian filter was applied with an SD of 1 for each key point
sequence, which smoothed out the movement of each key point,
suppressing any unwanted sudden jumps. Finally, the per-frame
changes in the normalized key point positions were calculated
and used as input to the classification model. For example, if a
person was detected in k frames of the video, the size of the
input tensor to the model k was –1×20; if the person did not
move throughout the video, the resulting input to the
classification model was a tensor with all zeros.

The preprocessed key point data were then used as the input for
the deep neural network, which classifies them as either correct
or incorrect postures.
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Figure 2. On the left: raw key point output. On the right: key points used for the training.

Architecture
The task of classifying squat postures can be viewed as a branch
of the action recognition task in which videos are classified
according to the actions performed by humans. It is better to
understand the whole action instead of per-frame information;
therefore, the temporal aspect of the data is crucial for the task.
The concepts from long-term recurrent convolutional network
[21] and convolutional 3D network [22] were combined to
design a model with both temporal convolution layers and long
short-term memory (LSTM) blocks. The architecture consisted
of three 1D convolution layers, 1 bidirectional LSTM layer,
and 1 fully connected layer, followed by a softmax layer. The

convolution layers had temporal kernel depths of 5, 3, and 3.
In other words, in the first convolution layer, 5 consecutive
frames were convoluted to create new features; in the second
and third convolution layers, 3 consecutive outputs were
convoluted together. The number of filters on the convolution
layers was 32, 64, and 64. The bidirectional LSTM block had
64 outputs, whereas the fully connected layer had 32 outputs.
The model was trained using the Adam optimizer with a learning
rate of 0.003 and a dropout rate of 0.3. These parameters were
determined using a grid search, which yielded the highest
validation accuracy of 0.9866. Figure 3 shows a simplified
illustration of the proposed model architecture.
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Figure 3. Proposed model architecture. LSTM: long short-term memory; Conv1D: 1D convolution layer.

Evaluation
The proposed deep learning model was evaluated using the test
set described in section 3; the results are reported in Table 1.
The model achieved an accuracy of 0.8498, a precision of
0.8713, and a recall of 0.8394. In addition to the model described
in Section 4, models without convolution layers and without
the LSTM blocks were trained and evaluated. As no suitable
baseline performance for squat postures was found in prior
work, the results of the Auto-ML Video Intelligence service of
Google Cloud [23] were used as the baseline; although not
designed for this task, it is still capable of classifying videos.

The results are presented in Table 1. The combination of LSTM
blocks and temporal convolution layers exhibited the highest
performance with a test accuracy of 85%. Convolution-only
methods performed better (82% accuracy) than LSTM-only
methods (78% accuracy), implying that the benefits of the
temporal convolution layer are greater than those of the LSTM
blocks. Google AutoML video intelligence service had the
lowest accuracy (69%). The test accuracies were significantly
lower than the training and validation accuracies for all 3
versions of the model, possibly due to overfitting on all 3
occasions, or it could mean that a large amount of the test set
data is quite different from the data in the training set.

Table 1. Accuracy of the proposed model.

Test accuracyValidation accuracyTraining accuracyModel

0.84980.98660.9929LSTMa + Convolution

0.76130.85320.8712LSTM only

0.82030.94410.9546Convolution only

0.6880——bGoogle Auto-ML

aLSTM: long short-term memory.
bNot available.

Part 2: Mobile Workout Assistant

Overview
After testing the proposed model, a mobile app, Home Alone
Exercise (HALE), was designed and developed to assist users
in learning squat exercises. In addition, an interventional study
was conducted to demonstrate the effectiveness of the app by
analyzing how the participants improved their exercises over
time in terms of performance and joint ROM. This study was

retrospectively registered on the Clinical Research Information
Service (KCT0008178). The study design was unmodified after
it began.

App Design
HALE was implemented for mobile devices, comprising 2
components: a server and a mobile app client. The server
receives a single squat workout video each time, analyzes the
posture through the pipeline, and responds with the classification
score (the output of the softmax layer) along with the received
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video, but with the extracted key points rendered on top. The
client allowed users to record their squat posture and send the
recording to the server for analysis. The recording starts 3
seconds after the user touches the “start” button to give them
time to position themselves correctly. The recording ended
automatically after a certain amount of time configured by the
user, and the recorded video was sent to the server. Visual and
auditory cues are provided at the start and end of the recording
session. When the client received a response from the server,
the recorded video was shown to the user along with the
extracted key points, and posture correctness was checked—such
feedback was designed to guide the user to monitor one’s
previous squats (eg, balance, joint angles, etc) so that they could
learn the correct posture through self-discovery [24]. The user
could configure the classification score threshold to adjust the
difficulty of the workout session. The app’s best results were
obtained when the device was placed at a height of
approximately 130 cm (or just below the chest height) and far
enough from the user’s workout spot to capture the user’s entire
body. The user must face the camera, just like in the videos
used in training. The server was implemented using Python and
TensorFlow (Google Brain), and the client was implemented
for Android devices using Android Studio (Google and
JetBrains).

Recruitment
The volunteers for the test were recruited through a web-based
forum on the Pusan National University web page. Preliminary

screening was conducted over the phone using the Physical
Activity Readiness Questionnaire for Everyone [25] to select
individuals without any health issues. They were then asked
whether they have learned squat exercise before and selected
ones without any squat exercise experience. Volunteers who
passed this preliminary selection underwent secondary in-person
screening and were asked to perform 10 squats. Only those who
received a “Good” mark from HALE less than 3 times and
whose squat posture was considered incorrect by 3 experts (each
with over 5 years of experience as a trainer with a master’s
degree in sports science) were allowed to participate in the
study. After receiving a sufficient explanation about the
experiment, the selected participants signed a consent form.
The participants were divided into experimental (EXP) and
control groups (CTL) using block randomization. Out of the
original 34 volunteers, 29 passed the preliminary screening, and
26 passed the second screening. Thus, the study began with 13
participants in each group (experimental and control); however,
3 participants from each group dropped out in each group.
Consequently, the study had a total of 20 participants (20
women), 10 participants in each group: experimental (n=10)
and control (n=10). None of the participants in the data set
collection were allowed to participate in this part of the study.
The physical characteristics of the participants in each group
are described in Table 2.

Table 2. Physical characteristics of the participants per group.

CTLbEXPaCharacteristics

22.60 (1.95)21.90 (2.18)Age (years), mean (SD)

164.70 (5.07)163.50 (6.00)Height (cm), mean (SD)

50.83 (4.74)55.32 (4.40)Weight (kg), mean (SD)

18.72 (1.23)20.75 (2.11)BMI (kg/m2), mean (SD)

35.52 (4.34)36.87 (3.61)Muscle mass (kg), mean (SD)

12.99 (1.74)16.03 (3.78)Fat mass (kg), mean (SD)

aEXP: experimental group.
bCTL: control group.

Procedure
Isometric muscle function, muscle strength, and muscular
endurance were measured using isokinetic equipment (Cybex
770, HUMAC NORM). Measurements were performed by
measuring the extension and flexion values of the hip and knee
joints. For muscle strength, angular velocity was measured at
60° per second 5 times, and muscular endurance was measured
at 180° per second 15 times. The maximum torque and total
workload of the knee and hip joints were also measured. All
data were normalized to the participants’ body weight.

In addition, XSENS MTi-1 inertial measurement unit sensors
(sampling at 100 Hz) were attached to identify 3D movements
of the knee joints. The ROM of the left and right knee joints
was calculated by combining the data from the inertial

measurement unit sensors (Figure 4). Finally, participants’body
composition analysis results were recorded.

After the presession, each participant was given a smartphone
with its app installed. The CTL was given a version of the app
without feedback capabilities, whereas the EXP received the
full version. Each group was asked to regularly practice squats
using their respective apps for a predetermined amount of time,
with their progress tracked through the logs left on the app
server. The squat practice sessions were designed according to
the American College of Sport Medicine guidelines as follows:

All participants were required to spend 30 minutes 5 days a
week each session (5-minute warm-up, 20-minute main exercise,
5-minute cooldown). During the main exercise, participants
performed squats for 1 minute and rested for 20-30 seconds.
For the EXP, the last squat in each set was assessed as either
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“good” or “bad” during the resting period. The training sessions
were recommended to be continuous for 30 min, but depending
on the participant’s stamina and schedule, they could be split

into multiple sessions; when that was the case, they were advised
to have sessions no shorter than 10 min. Table 3 shows a
breakdown of the training sessions.

Figure 4. Joint angle measurement using inertial measurement unit (IMU) sensors. Angle A on the rightmost image: knee joint angle.

Table 3. App intervention program.

FrequencyTimeTypeOrder

5 days/week5 minutesStretching (neck, shoulder, waist, legs, and ankles)Warm-up

5 days/week≈20-22.5 minutes(60-second squat work out + ≈20-30–second break) × 15 setsMain exercise

5 days/week5 minutesStretching (neck, shoulder, waist, legs, and ankles)Cooldown

HALE was designed to send a notification if the participant did
not open the app for longer than 24 hours, with the progress of
each participant checked through the logs on the server. A
check-in call was given on the following day whenever a
participant failed to complete the training session on any given
day.

After 2 weeks of training and the final recording session, all the
smartphones were collected from the participants to collect and
analyze data.

Statistical Analysis
Statistical analyses were performed on the 3 measures—the
overall squat score assessed by HALE, the knee joint ROM,
and the isokinetic muscle strength. Two-way mixed ANOVA
[26] was used to analyze the interaction effects. Subsequently,
1-way repeated-measures ANOVA was applied for each group
to analyze the effects of sessions per group. If any significant
differences were detected, a post hoc comparison analysis using
the least significant difference was performed.

Ethics Approval
After receiving sufficient explanation about the first part of the
experiment, participants signed a consent form approved by the
Pusan University Bioethics Committee (PNU
IRB/2019_38_HR), and after receiving sufficient explanation
about the second part of the experiment, the selected participants
signed a consent form approved by the Pusan University
Bioethics Committee (PNU IRB/2020_137_HR).

Results

As a result of Mauchly normality test [27], all items showed a
normal distribution, but the CTL App test did not show
normality; therefore, Greenhouse-Geisser function was used.
The squat score measured by HALE was evaluated, and the
results are presented in Table 4. The results of the repeated
measures ANOVA for each group showed that there was a
significant difference (F2,18=11.174, P=.001) in squat score for
the EXP, while no significant effect was observed for the CTL
(F2,18=2.675, P=.13). The post hoc analysis revealed that the
participants performed significantly better during both the mid-
and Post sessions than during the presession (P=.006 and
P=.001, respectively). No interaction was found on the 2-way
mixed ANOVA.

The results of the repeated-measures ANOVA for each group
are shown in Table 5. For the EXP, there were significant
differences in the left (F2,18=5.811, P=.02) and right
(F2,18=4.736, P=.03) knee joint angles, while no significant
effect was observed for the CTL in the left (F2,18=0.398, P=.68)
and right (F2,18=0.517, P=.61) knee joint angles. Post hoc
analysis revealed that the left knee joint angle in the postsession
was smaller than that in the pre and midsessions (P=.048 and
P=.02, respectively). In addition, the joint angle of the right
knee in the postsession was smaller than that in the midsession
(P=.02). No significant interaction was observed when 2-way
mixed ANOVA was performed.
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The changes in isokinetic muscle strength measured during each
session were also analyzed. Regardless of the group, the
participants’ muscle strength and endurance of the trunk and

knees either increased significantly or showed a tendency to
increase.

Table 4. Results of the overall squat score measured by Home Alone Exercise (HALE).

F(df; P value)95% CIESa1–βPost hocSquat posture, mean (SD)Session

11.174 (2,18; .001)0.554.945Pre<Mid (P=.006);Pre<Post (P=.001)Group EXPb (N=10)

–0.102 to 0.5020.20 (0.42)Pre

1.750 to 6.6504.20 (3.43)Mid

4.275 to 11.7258.00 (5.20)Post

2.675 (2,18; .13)0.229.284NSdGroup CTLc (N=10)

–0.471 to 1.8710.70 (1.63)Pre

–0.486 to 3.0861.30 (2.50)Mid

–0.086 to 7.6863.80 (5.43)Post

aES: effect size.
bEXP: experimental group.
cCTL: control group.
dNS: nonsignificant; significance level at .05.

Table 5. Results of the joint angles.

F (df; P value)95% CIESa1–βPost hocJoint angle, mean (SD)SessionBody

Group EXPb (N=10)

4.736 (2,18; .03)0.904.722Mid>Post (P=.018)Right knee

54.612-89.38371.99 (20.79)Pre

64.011-89.36476.68 (15.16)Mid

50.379-75.26162.82 (14.88)Post

5.811 (2,18; .02)0.454.822Pre>Post (P=.048); Mid<Post (P=.02)Left knee

56.534-93.59975.06 (22.16)Pre

60.042-92.44176.24 (19.37)Mid

52.213-74.06463.13 (13.06)Post

Group CTLc (N=10)

0.517 (2,18; .61)0.054.061NSdRight knee

54.579-87.07170.82 (22.71)Pre

61.470-86.58274.02 (17.55)Mid

59.200-81.27470.23 (15.42)Post

0.398 (2,18; .68)0.042.056NSLeft knee

56.711-89.93773.27 (23.15)Pre

5.635-61.30774.05 (17.81)Mid

5.169-59.01570.70 (16.34)Post

aES: effect size.
bEXP: experimental group.
cCTL: control group.
dNS: nonsignificant; significance level at .05.
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Discussion

Principal Results
The results of the isokinetic muscle strength test indicate that
all the participants, regardless of their group, performed the
squats as instructed. However, while they all gained muscle,
only the participants in the EXP increased the ROM of the knee
joint by 12.8% in the right leg and 15.9% in the left leg. In
contrast, the ROM of the soft joint in the CTL increased by
0.9% in the right leg and by 3.6% in the left leg. The EXP
showed significant improvement in the wider advanced squat
technique compared to the CTL [28,29]. In addition, the results
of the overall squat score and the joints’ ROM indicated that
the participants who used HALE effectively improved their
squat skills, whereas those who did not use HALE showed no
significant improvements. The ratio of squats in the correct
posture increased by 52.3% in the EXP and 21.3% in the CTL,
indicating that the developed app worked properly and was
effective.

Moreover, while the exercise app only provided pass-or-fail
feedback along with a skeleton overlaid video playback, it
effectively guided participants to learn small details about squat
exercises, such as how far they had to sit down to properly
perform a full squat exercise. In other words, when an automatic
evaluation and self-discovery [30] system is combined with
physical training programs, people can effectively develop
exercise skills without direct instruction. Such findings and
approaches utilizing a deep learning–based evaluation and
feedback process, are expected to benefit various communities
seeking to develop effective exercise programs that can be
remotely taught and learned.

Furthermore, to provide advanced feedback and guidance, the
size and complexity of both data sets and deep learning models
must increase drastically. As the deep learning model only was
needed to determine whether a trainee correctly performed an
exercise, the otherwise complex problem involving 3D motion
guidance became as easy as a binary classification problem. In
other words, the deep learning model was able to be trained
with high accuracy within a short period of time using
approximately 2000 squat video data taken from the front, which
simplified data labeling, processing time, and effort. In addition,
the study results indicate that the participants effectively
improved their squats, even though the proposed solution did
not provide detailed feedback or specific guidance for
improvement. Such a simplified training method possesses great
potential to boost web-based or remote exercise platforms, cover
various exercises, and can be expanded to remote communities.

Limitations
Different from conventional training systems, HALE does not
provide direct instructions. However, while such an approach
may initially be mistaken as more difficult to learn, the study
results indicate that the users experienced more effective
workout sessions using the app even without direct instructions.
In fact, the indirect feedback was able to help the users to engage
and learn by themselves about the correct postures as they tried
to improve their scores, suggesting that machine learning models
can be trained effectively as training tools, even with minimal
data and simple architectures. Choosing more complex model
architectures, collecting more data to improve the model, or
providing more detailed instructions to users might be viable
options, but those approaches could be too costly compared to
the benefits and do not even guarantee better teaching effects.

In addition, HALE might lack robustness; the user must place
the smartphone at a predetermined distance, height, and angle,
or the app cannot correctly assess their squat. However, this
issue can be resolved by using the recently developed 3D pose
estimation algorithms [31]. The current version of HALE only
supports squats; however, it can be extended to other exercises
by collecting new data sets and training new models.

Unfortunately, it was difficult to find more appropriate
participants who had little or no experience with squats because
most men had some exercise experience. However, while further
investigation on additional men might be beneficial, the
difference is likely to be marginal, as evidenced by prior work,
which indicated no significant difference between men’s and
women’s exercise efficacy [32,33].

Conclusions
This study demonstrated the effectiveness of a deep
learning-based personal workout assistant that can provide
feedback on squat postures using only mobile devices. In the
first part of the study, the squat video data set was created and
the deep learning model, which showed a test accuracy of 85%,
was trained. In the second part, the mobile workout assistant
app, HALE, was developed and the interventional study showed
how it helped people improve squat exercise. As demonstrated
by the improvements in the squat posture and joint ROM, the
EXP trained with HALE experienced faster improvement and
learned more nuanced details of the squat exercise. The proposed
mobile app that is low cost and provides self-discovery feedback
effectively taught users about squat exercises without expensive
in-person sessions with a trainer.
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