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Abstract

Background: Antidepressants exert an anticholinergic effect in varying degrees, and various classes of antidepressants can
produce a different effect on immune function. While the early use of antidepressants has a notional effect on COVID-19 outcomes,
the relationship between the risk of COVID-19 severity and the use of antidepressants has not been properly investigated previously
owing to the high costs involved with clinical trials. Large-scale observational data and recent advancements in statistical analysis
provide ample opportunity to virtualize a clinical trial to discover the detrimental effects of the early use of antidepressants.

Objective: We primarily aimed to investigate electronic health records for causal effect estimation and use the data for discovering
the causal effects of early antidepressant use on COVID-19 outcomes. As a secondary aim, we developed methods for validating
our causal effect estimation pipeline.

Methods: We used the National COVID Cohort Collaborative (N3C), a database aggregating health history for over 12 million
people in the United States, including over 5 million with a positive COVID-19 test. We selected 241,952 COVID-19–positive
patients (age >13 years) with at least 1 year of medical history. The study included a 18,584-dimensional covariate vector for
each person and 16 different antidepressants. We used propensity score weighting based on the logistic regression method to
estimate causal effects on the entire data. Then, we used the Node2Vec embedding method to encode SNOMED-CT (Systematized
Nomenclature of Medicine-Clinical Terms) medical codes and applied random forest regression to estimate causal effects. We
used both methods to estimate causal effects of antidepressants on COVID-19 outcomes. We also selected few negatively effective
conditions for COVID-19 outcomes and estimated their effects using our proposed methods to validate their efficacy.

Results: The average treatment effect (ATE) of using any one of the antidepressants was −0.076 (95% CI −0.082 to −0.069;
P<.001) with the propensity score weighting method. For the method using SNOMED-CT medical embedding, the ATE of using
any one of the antidepressants was −0.423 (95% CI −0.382 to −0.463; P<.001).

Conclusions: We applied multiple causal inference methods with novel application of health embeddings to investigate the
effects of antidepressants on COVID-19 outcomes. Additionally, we proposed a novel drug effect analysis–based evaluation
technique to justify the efficacy of the proposed method. This study offers causal inference methods on large-scale electronic
health record data to discover the effects of common antidepressants on COVID-19 hospitalization or a worse outcome. We found
that common antidepressants may increase the risk of COVID-19 complications and uncovered a pattern where certain
antidepressants were associated with a lower risk of hospitalization. While discovering the detrimental effects of these drugs on
outcomes could guide preventive care, identification of beneficial effects would allow us to propose drug repurposing for COVID-19
treatment.
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Introduction

The COVID-19 outbreak [1], which was declared a pandemic
in 2020 [2], is a devastating health crisis that needs new
preventive strategies and treatments. One characteristic
distinguishing this pandemic from others is the remarkable
heterogeneity of outcomes among infected people. While some
patients have mild illness, 18% have moderate or severe
outcomes [3,4]. Worse outcomes have been associated with
several risk factors, including age [5], sex [6-8], socioeconomic
background, and comorbidities, such as obesity [9-11], chronic
obstructive pulmonary disease [12-15], type 2 diabetes [16,17],
and hypertension [18-20]. Yet, these risk factors do not fully
explain the variation in outcomes. Some drugs may change the
course of COVID-19 [21,22]. Discovering these either beneficial
or harmful effects could improve medical care. For instance,
certain cyclooxygenase inhibitors, which are common
anti-inflammatory drugs, have been associated with worse
outcomes, suggesting that some pain relievers should be avoided
in COVID-19 patients [23]. On the other hand, discovering
medications associated with improved outcomes can help us
identify new therapies. From the early stages of the outbreak,
a number of drugs have been proposed for repurposing,
including hydroxychloroquine, which was notorious, and
remdesivir, a broad-spectrum antiviral, which was successful
[24]. Because the SARS-CoV-2 virus targets the
renin-angiotensin-aldosterone system through its interaction
with the ACE2 receptor, previous investigations have used the
cohort study method to investigate infections and outcomes in
people taking ACE inhibitors or angiotensin receptor blockers
[25]. Those results indicated that a protective effect could be
identified from retrospective analyses of people on these
medications.

Building on these encouraging findings, we aimed to discover
whether other classes of medications could impact outcomes.
We focused on antidepressants, which are common drugs used
by over 13% of adults in the United States [26]. Antidepressants
have been linked to unexpected effects on diverse inflammatory
and cardiovascular outcomes [27]. Use of antidepressants has
been associated with an increased risk of hospital mortality [28],
possibly due to their cardiovascular effects [27]. In a small study
in France, protective effects on severe COVID-19 outcomes
were found [29]. In another study, Clelland et al [30] showed
a significant protective association between antidepressant use
and COVID-19. Hoertel et al [31] showed a protective effect
of fluoxetine or fluvoxamine on COVID-19 mortality. In a
separate study, Hoertel et al [29] used a Cox regression model
to investigate the association between antidepressant intake and
the risk of intubation and COVID-19 mortality. Because of the
popularity of antidepressants and their previous associations
with complications that are relevant to COVID-19 outcomes

[32,33], we investigated the possible effects of antidepressants
on COVID-19 using a large population in the United States.

While previous work has assessed the association of medication
use with COVID-19 severity [34], including the studies
mentioned above, the work was limited by both a small
population size and minimal adjustment for confounding. For
instance, Israel et al [34] estimated the effects of drugs on
COVID-19 using a case-control method. They matched
COVID-19 cases against a control cohort of
COVID-19–negative people on a set of 5 to 12 selected
confounders. This limited adjustment for confounding is typical
of previous studies, which have not controlled for possible
confounders, including history of high cholesterol and other
recorded medical care. Factors, such as socioeconomic status,
can influence disease risk and influence levels of medical care,
and such factors could create confounding. It is possible that
people with more medical care, including those diagnosed and
in treatment for other medical conditions, are at reduced risk
for complications. If all confounders are known and well
measured, then such an approach could work well. However,
given the lack of knowledge about the risk factors for
COVID-19, approaches controlling for a minimal set of possible
confounders are vulnerable to residual confounding. It is crucial
to critically assess the methods used for estimating these results.

Here, we made use of the National COVID Cohort Collaborative
(N3C), a database aggregating health history for over 12 million
people in the United States, including over 5 million with a
positive COVID-19 test. In addition to health history for each
COVID-19 patient, this data set provides a severity score for
each patient, based on the World Health Organization
COVID-19 severity scale [3]. To estimate the effects of
antidepressants on COVID-19 outcomes, we considered 16
antidepressants from the N3C data enclave, with each used by
more than 5000 patients. To estimate the effects of these drugs
on outcomes, we applied causal inference methods, including
a novel application of health embeddings. Our methods build
on approaches like the case-control or cohort study to estimate
effects of exposures on an outcome of interest. While
measurement of true causal effects requires a randomized trial,
such approaches are expensive and unlikely to be performed
for every common drug. Instead, causal inference methods aim
to emulate a clinical trial using observational health data. While
the resulting inferences cannot be conclusively deemed causal,
they represent our best possible estimate using nonexperimental
data. Therefore, unlike previous work, we used causal inference
methods to rigorously adjust for confounding. We used both a
well-established method (high-dimensional propensity score
[35] weighting) and a relatively less common method based on
embeddings of medical codes [36]. The contributions of this
work include both the estimates of the effects of antidepressants,
and the rigorous assessment and comparison of methods for
causal effect inference.
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Methods

Data Sources
Our analysis made use of the N3C resource, which aggregates
data on over 12 million people in the United States across dozens
of sites of care. This population includes over 5 million people
with COVID-19. Data sources were united using the OMOP
Common Data Model, which allowed common concept
identifiers to be created and a common format to be achieved
across diverse data sources. An application under the Data Use
Request system allowed us to access the deidentified version
of the data. These data create a comprehensive portrait of the
health history of millions of people, with loss of only exact
dates and exact locations for each person.

From the set of COVID-19–positive people, we obtained their
subsequent severity score previously calculated based on the
World Health Organization index [3]. For each person, this is
the most severe encounter in their medical history, based on a
5-level scoring system. The levels are mild, mild with
emergency department visit, moderate with hospitalization,
severe with hospitalization, and hospital mortality. Because of
the small size of the population with a severe condition or
mortality, we grouped together all hospitalized patients (around
20% of the positive population) to identify how antidepressant
use affects hospitalization. People missing a severity score were
considered as nonhospitalized, since any record of
hospitalization is likely to have been noted in the health record.
Therefore, our focus was on identifying causal effects on the
presence of the hospitalization outcome. Notably, this measure
has been previously used to assess demographic factors
associated with COVID-19 outcomes [3].

Study Population
We identified 16 common antidepressants using the OMOP
concept relation data. First, we obtained all concepts of the type
“ingredient” that are descendants of the ATC class
“antidepressants” (OMOP concept ID 21604686). Then, we
obtained all drugs that contained these ingredients and obtained
all instances of use of these drugs, using the condition_era table
in N3C. We retained all ingredients used by more than 5000
people to create a set of 16 antidepressants.

Antidepressants are divided into 5 classes based on which
neurotransmitter they affect. Among the 16 antidepressants we
considered for our study, fluoxetine, paroxetine, sertraline,
citalopram, and escitalopram are classified as selective serotonin
reuptake inhibitors (SSRIs); duloxetine, venlafaxine, and
desvenlafaxine are classified as serotonin and norepinephrine
reuptake inhibitors (SNRIs); trazodone, mirtazapine,
vortioxetine, vilazodone, and bupropion are classified as atypical
antidepressants; and nortriptyline, amitriptyline, and doxepin
are classified as tricyclic antidepressants [37]. Monoamine
oxidase inhibitors are a type of antidepressant that can cause
potentially serious side effects, and they are rarely prescribed
by doctors nowadays [37]. Moreover, our data set had no data
points that involved antidepressants from the monoamine
oxidase inhibitor class. Hence, we ignored this class in our
study.

Among the COVID-19–positive population, we further restricted
our analysis to those who had a medical history of at least 1
year. This is common in pharmacoepidemiology studies to
obtain an adequate history of the study population. We further
restricted our study to those with an age of over 13 years and
with a valid zip code. Eventually, we identified 241,952
individuals taking one or more antidepressants (Figure 1).
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Figure 1. Overview of causal inference estimates and methods for obtaining them. ATE: average treatment effect; N3C: National COVID Cohort
Collaborative.

Ethical Considerations
In this study, we used deidentified observational data from the
N3C [38], and this is not considered human subject research.
N3C has approved the data for secondary use without the need
for institutional review board approval and has approved this
study for publication/submission.

Causal Inference Analysis
We performed multiple analyses to assess the causal effect while
controlling for all measured confounders. First, we obtained all
health history and demographics preceding the positive
COVID-19 diagnosis for each patient in the data set. This set
of variables consisted of all possible diagnosis codes (from the
“condition_era” table), as well as age, gender, race, ethnicity,
and the 3-digit zip code (from the “person” table).

We identified a number of treatment effects of interest. We were
interested in estimating the effect of taking each antidepressant
versus not taking each antidepressant (nonuser analysis), and
additionally the difference in effects for each pair of
antidepressants (active comparator analysis). Each treatment
effect of interest identifies a pair of populations: the treated
cohort (all COVID-19–positive people who are taking the drug
of interest) and the comparison cohort (all COVID-19–positive
people who are either not taking the drug of interest in the
nonuser analysis or are taking another drug in the active
comparator analysis).

The average treatment effect (ATE) was defined as the mean
difference in outcomes between the two cohorts. If hi represents
the hospitalization outcome for the ith person, the formula for
the ATE is as follows:
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One major issue with the use of an observational data set instead
of performing a randomized controlled trial is the risk of having
selection bias in the experimental setup. We expect the pair of
cohorts to differ in terms of health history and demographics,
which can confound an unadjusted estimate of the ATE.
Therefore, it is important to adjust for these differences to obtain
an unbiased effect estimate. A common method to adjust for
confounding is propensity score weighting, which creates a
weighted pseudopopulation where treated comparator
populations are balanced for possible confounders [39]. Lee et
al [40] elaborately explained how machine learning models
improve the performance of propensity score weighting. Pan et
al [41] presented some references on how classification and
regression models provide an improved version of propensity
score weighting. Moreover, we included all medical history
data of the patients as features, which resulted in
high-dimensional input feature vectors (18,584-dimensional).
Processing high-dimensional data is computationally expensive
and is not feasible in almost all existing methods other than
sparse logistic regression [42]. Considering this, here, we
implemented propensity score weighting using sparse logistic
regression and random forest. Both methods share the goal of
representing possible confounders, and we performed 2
representations to avoid sensitivity to misspecification of the
model for propensity. The propensity score represents the
probability of each person falling into the treated or comparator
cohorts, given their history and demographics, as follows:

p(treated | person i’s health history, demographics) =
pi (2)

We estimated this propensity score using 2 different and
complementary methods, and then, we used this score to weight
each person’s overall contribution to the estimate of the ATE
as follows:

For each causal effect of interest, we estimated the propensity
for treatment using 2 different ways of encoding health history
(Figure 1). First, we estimated propensity for treatment by
performing a high-dimensional regularized logistic regression,
which was fitted to model pi separately for each causal effect
of interest. For this analysis, we encoded each of the health
history and demographic variables using the one-hot encoding
scheme. Therefore, we modeled all previous diagnoses and
treatments, creating a resulting 18,584-dimensional covariate
vector for each person. Second, we used an embedding
representation of patient health status at the time of the
COVID-19–positive test. The embedding representation was
precomputed by Pattisapu et al [36], using the Node2Vec
method to encode SNOMED-CT (Systematized Nomenclature
of Medicine-Clinical Terms) medical concepts to the embedded
vector space. For each of the 18,584 health history codes, we
matched the code to its 128-dimensional pretrained embedding
vector ec. Then, for the ith person, given their list of previous
medical codes {codesi}, we created an overall representation of
patient health by averaging these vectors as follows:

Then, we modeled the propensity for treatment given the vector
of the patient health state. Logistic regression was not feasible
for this large nonsparse data, so we used random forest, which
is also a popular tool for estimating the propensity score. Here,
the ATE was assessed on the full data set. We chose these
methods because the first (high-dimensional propensity score)
is the more standard method and the second (embedding) can
potentially account for poorly measured confounders [43]. By
performing both types of causal inferences, we can evaluate the
sensitivity of our results to specifications of the propensity
model. These approaches have the potential to adjust for
confounding, unlike previous methods [29-31].

Obtaining CIs
We obtained CIs using the bootstrap method. Specifically, we
sampled with replacement to obtain our pair of cohorts. For
each sample, we estimated the propensity weights and used this
to estimate the overall causal effect. This process was repeated
100 times to create 100 estimates, providing the CIs.

Assessing Our Results Using Negative Controls
The practice of using negative control outcomes, which are
outcomes thought not to be causally affected by an exposure,
is intended to form a point of comparison for our causal effects
of interest. We selected negative control outcomes using
literature on known causal effects of antidepressants, selecting
some common outcomes that are not likely to be the result of
antidepressant use. We selected the following: fracture of bone
(SNOMED-CT code 125605004), asthma (SNOMED-CT code
195967001), chronic kidney disease (SNOMED-CT code
709044004), disorder of nail (SNOMED-CT code 17790008),
and eczema (SNOMED-CT code 43116000). For each negative
outcome, we estimated the causal effect in the same way as for
our outcome of interest (hospitalization with COVID-19).

Results

Topics of Interest
Our main results addressed 2 topics of interest. First, we were
interested in discovering new effects of drugs on COVID-19
outcomes, as measured by the severity score. Second, we wanted
to evaluate our methods in order to contribute to the causal
inference literature.

Causal Effects of Interest
In order to discover the actionable unknown effects of drugs on
COVID-19 trajectory, we focused on a set of causal effects of
interest. We were interested in the effect of each common
antidepressant on COVID-19 hospitalization outcome. Figure
2 shows the frequency of prescription of each antidepressant in
the population. We followed the approach of emulating
randomized trials using observational data [44]. We created
target randomized trials to follow the user versus nonuser design
and to follow the active comparator design. In the user versus
nonuser design, we emulated a trial where people are
randomized to either using an antidepressant or not using an
antidepressant. In the active comparator design, the target trial
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compared people taking one antidepressant versus another. Each
such target trial defined 2 populations of interest: the treated
and comparison populations. Then, for each causal effect of
interest, we used multiple methods to estimate the relationship.
Therefore, we performed one effect estimate for each
antidepressant in a user versus nonuser design, and one estimate
for each pair of antidepressants and comparison of each
antidepressant to another in an active comparator design.

We obtained the population of people with a positive polymerase
chain reaction test from the N3C data and obtained the score
calculating the severity of their COVID-19 outcomes. We further
identified those people with a history of taking antidepressants
before their positive test. Using these data, we identified the

treated and comparison cohorts for each effect of interest. To
emulate a randomized trial, we must adjust for any medical
history that may create a biased association between the
treatment and outcome. We adjusted for all medical history data
before the positive COVID-19 test using the propensity score
weighting method to obtain the adjusted ATE (see Methods).
We calculated CIs by creating 100 bootstrap samples of the data
set (see Methods). We used 2 methods to encode medical history
in order to calculate the propensity score: high-dimensional
sparse representation of history, and representation by medical
code embeddings. These 2 methods share the goal of
representing possible confounders, but we intended for these 2
complementary representations to enable critical assessment of
the methods and their effect estimates.

Figure 2. Population distribution for each antidepressant. This represents the number of patients who took each of the antidepressants as treatment.

Causal Effect Estimates Indicate a Significant Impact
of Antidepressants on Hospitalization
The results indicated a significantly worse outcome (higher
rates of hospitalization among users) (Figure 3). In order to
assess whether these results are specific to hospitalization
outcomes or rather some difference in overall sickness between
the 2 cohorts, we selected a set of negative control outcomes.
Good negative controls are those that may be associated with
confounding variables, such as overall sickness, but are not

associated with the exposure of interest [45,46]. We used
information on the known side effects of antidepressants to
select 5 negative control outcomes (fracture, asthma, chronic
kidney disease, nail disorder, and eczema) that were intended
to represent diverse medical states unrelated to antidepressant
use. While antidepressants showed significant associations with
the outcome of interest (hospitalization), all negative control
outcomes had no significant association with antidepressants
(Figure 4).

Figure 3. Average rate of nonhospitalization in the user versus nonuser design. ATE: average treatment effect.
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Figure 4. Negative control average treatment effects.

Active Comparator Design Suggests Differences in
Outcomes Between Antidepressants
While all antidepressants appeared to increase the risk of
hospitalization, we also performed a head-to-head active

comparator analysis to assess diversity in the effects. Vilazodone
and vortioxetine, as compared to the other antidepressants,
appeared to confer some protection against hospitalization. This
may be due to uncharacterized cardiovascular effects, which
have been described in certain contexts (Figure 5).
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Figure 5. Results of the active comparator design comparing each antidepressant to others. The average treatment effect is shown in each box of the
treatment (row) versus comparator (column), with bold numbers indicating a CI not overlapping the null effect.

Comparing the High-Dimensional Propensity Score
Against the Embedding-Based Propensity Score
The high-dimensional propensity score required a sparse
encoding that did not on its own capture any meaning of medical
codes. That is, each of the 10,000 codes modeled in the
propensity score must be modeled using a one-hot vector, and
all context for each code is lost. This means that 2 medical codes
for very similar conditions, for example, fracture of the right
leg and fracture of the left leg, are encoded no more similarly
than 2 medical codes for unrelated conditions. In order to
examine the impact of a coding system that retains the meaning
of the medical codes, we made use of medical embeddings that

exist for the SNOMED-CT concept coding system [36]. While
embeddings have been explored previously for matching [43],
the use of embeddings to create propensity score weights has
not been reported to our knowledge. We created an embedding
representation of patient health history using the average of all
medical codes in a person’s history. Then, as with the
high-dimensional sparse representation of health history, we
calculated propensity weights and obtained the ATE. The ATEs
were much more extreme using this method (Figure 6), and the
negative control outcomes similarly had a biased result (not
shown). This contrasts with the high-dimensional propensity
weighting method, where the negative control outcomes, as
expected, retain a null effect.
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Figure 6. Average treatment effect using embedding representation of patient history. ATE: average treatment effect.

Discussion

Principal Findings
This study aimed to apply causal inference methods to discover
whether taking any common antidepressants is associated with
poor COVID-19 outcomes, and to compare different methods
for assessing these effects. Our findings suggest that common
antidepressants may increase the risk of COVID-19
complications. Additionally, in our analysis of the effect of each
common antidepressant as compared to that of other
antidepressants, we uncovered a pattern where certain
antidepressants were associated with a lower risk of
hospitalization. We also experimented with multiple methods
for encoding health history to uncover causal effects. Because
health data involve thousands of medical codes, representing
each of these codes using a sparse representation can create a
very large regression problem for propensity weighting. In
addition, this representation of medical history does not make
use of knowledge about the meaning of these medical codes.
In order to make use of this information, we alternatively
encoded medical history using embedding vectors created using
the Node2Vec method. These embeddings have been extensively
evaluated as an efficient representation of medical knowledge
[36]. We found that both methods had a consistent direction of
effect, but the effect estimates were more extreme using
embeddings rather than the sparse encoding.

Our findings about the effects of antidepressants, if replicated
in other data sets, could suggest that providers should change
their uses of antidepressants to improve COVID-19 outcomes
among high-risk groups. Among prior studies, Lenze et al [47]
performed a randomized controlled trial of 152 patients and
showed a significantly reduced risk of worse clinical outcomes
in patients with symptomatic COVID-19 who were administered
fluoxetine than in those who were administered placebo.
Oskotsky et al [48] performed an observational study on
COVID-19 mortality and implemented a propensity score
matching method only on the exposure of some specific SSRIs
(fluoxetine or fluvoxamine). Moreover, several clinical and

preclinical studies found an association between fluoxetine
intake and a lower risk of intubation or mortality [29,49,50].
However, these findings do not answer if other SSRI or
non-SSRI antidepressants are as effective as fluoxetine or
fluvoxamine. In contrast, our study considered 16
antidepressants of 4 types, including SSRI, SNRI, atypical, and
tricyclic antidepressants. The results indicated significant
associations of citalopram, escitalopram, venlafaxine,
desvenlafaxine, mirtazapine, doxepin, and vilazodone with a
reduced risk of worse COVID-19 outcomes, apart from
fluoxetine. Some other prior studies assessing the association
between antidepressant intake and COVID-19 severity have
used limited adjustment for confounders or small populations
[29-31]. Our study has made extensive efforts to adjust for
confounding. The results support and are consistent with the
findings of prior preliminary studies. Further, our study showed
that the association between antidepressant intake and a reduced
risk of COVID-19 mortality, intubation, or a worse outcome is
not only for fluoxetine or SSRIs, and other antidepressants from
several classes have similar effects on COVID-19 outcomes.
Our consistent results from 2 causal inference methods support
that these methods can be used to mine possible effects from
large health record data. As the methods are not specific to
antidepressant advances, these findings suggest that the N3C
data set could be used with these methods to investigate other
factors impacting COVID-19 outcomes, including other drugs
and other medical procedures and treatments.

Limitations
In a nonrandomized setting, it is not possible to be certain that
the results are free of residual confounding. Although our
method carefully considered all medical history data, thus
accounting for all measured confounding, unmeasured
confounding could still bias the results. To mitigate this risk,
we have undertaken an analysis using negative control outcomes.
One possible example of unmeasured confounding is if people
taking antidepressants generally have poor health. Poor health
is not directly recorded in the N3C. However, in this case, we
would expect an association between antidepressants and
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increased prevalence of many other diseases, such as the set of
negative control outcomes we selected for analysis. Because
we did not find any association of antidepressants with these
negative control outcomes, our results do not appear to be due
to this type of confounding. Other limitations include the short
duration of observation for our data set, as we only used 3 years
of data to estimate confounding. Some confounders may be
recorded only more distantly in health history, but this time
window is commonly used in observational data analysis. We
also did not use the duration or dose of antidepressants;
therefore, our results represent the impact of any use of
antidepressants on disease outcomes.

Another caveat concerns the embedding effect estimates. This
method estimated treatment effects that were much more
extreme than those in the more traditional encoding of health
history. Under a conservative interpretation, we believe this is
more likely due to the shortcomings of this approach, which
makes it susceptible to bias, rather than being due to a true
extreme causal effect. The bias in the results could be due to
one of the following reasons. First, the embedding vectors do
not precisely represent important confounders. As the vectors
are only 128-dimensional, some information about specific
medical codes that may be crucial confounders may be lost.
Second, the method for calculating propensity weights based
on medical embeddings must be improved. This may involve
developing other ways to represent a patient’s health history

given a set of embeddings. Third, these embeddings are not
designed to represent a patient’s state before drug prescription,
and performance may be improved by applying medical
embeddings specifically designed to represent the confounding
relationship between health history and drug prescription [43].
Further experimentation is needed to assess how best to use
embedding vectors for causal inference.

Conclusions
In this study, we investigated how antidepressants affected
COVID-19 outcomes, using causal inference methods. In
addition to standard propensity score analysis, we implemented
a novel application of health embeddings. To support the
effectiveness of the suggested strategy, we also offered a novel
drug effect analysis–based evaluation tool. This study used
causal inference techniques on large electronic health record
data to identify how commonly prescribed antidepressants affect
hospitalization for COVID-19 or a worse outcome. The research
suggested a pattern in which some antidepressants are connected
to a decreased risk of hospitalization. Because the risk profile
of antidepressants is well known, our findings can be used to
provide justification for investment in future large-scale clinical
trials to find the best treatment for depression in those with
COVID-19 at high risk of poor outcomes. Future work can build
on our methods to identify more factors influencing COVID-19
outcomes to help predict who is at high risk and to suggest
interventions.

Data Availability
All the analyses were conducted using the National COVID Cohort Collaborative (N3C) database, which is available to researchers
and investigators conducting COVID-19–related research, subject to certain eligibility criteria and data use agreements. Access
to the data is granted through a secure online platform that requires registration and approval by the N3C Data Enclave Governance
Committee. Researchers who are interested in using the cohort we generated from original N3C data, are asked to get N3C
approval first and then contact the corresponding author, MAUA (mohammadariful_alam@uml.edu). For more information about
accessing the N3C data and the eligibility criteria, please visit the N3C website [51].
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N3C: National COVID Cohort Collaborative
SNOMED-CT: Systematized Nomenclature of Medicine-Clinical Terms
SNRI: serotonin and norepinephrine reuptake inhibitor
SSRI: selective serotonin reuptake inhibitor
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