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Abstract

Background: The narrative free-text data in electronic medical records (EMRs) contain valuable clinical information for analysis
and research to inform better patient care. However, the release of free text for secondary use is hindered by concerns surrounding
personally identifiable information (PII), as protecting individuals' privacy is paramount. Therefore, it is necessary to deidentify
free text to remove PII. Manual deidentification is a time-consuming and labor-intensive process. Numerous automated
deidentification approaches and systems have been attempted to overcome this challenge over the past decade.

Objective: We sought to develop an accurate, web-based system deidentifying free text (DEFT), which can be readily and
easily adopted in real-world settings for deidentification of free text in EMRs. The system has several key features including a
simple and task-focused web user interface, customized PII types, use of a state-of-the-art deep learning model for tagging PII
from free text, preannotation by an interactive learning loop, rapid manual annotation with autosave, support for project management
and team collaboration, user access control, and central data storage.

Methods: DEFT comprises frontend and backend modules and communicates with central data storage through a filesystem
path access. The frontend web user interface provides end users with a user-friendly workspace for managing and annotating free
text. The backend module processes the requests from the frontend and performs relevant persistence operations. DEFT manages
the deidentification workflow as a project, which can contain one or more data sets. Customized PII types and user access control
can also be configured. The deep learning model is based on a Bidirectional Long Short-Term Memory-Conditional Random
Field (BiLSTM-CRF) with RoBERTa as the word embedding layer. The interactive learning loop is further integrated into DEFT
to speed up the deidentification process and increase its performance over time.

Results: DEFT has many advantages over existing deidentification systems in terms of its support for project management,
user access control, data management, and an interactive learning process. Experimental results from DEFT on the 2014 i2b2
data set obtained the highest performance compared to 5 benchmark models in terms of microaverage strict entity–level recall
and F1-scores of 0.9563 and 0.9627, respectively. In a real-world use case of deidentifying clinical notes, extracted from 1 referral
hospital in Sydney, New South Wales, Australia, DEFT achieved a high microaverage strict entity–level F1-score of 0.9507 on
a corpus of 600 annotated clinical notes. Moreover, the manual annotation process with preannotation demonstrated a 43%
increase in work efficiency compared to the process without preannotation.
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Conclusions: DEFT is designed for health domain researchers and data custodians to easily deidentify free text in EMRs. DEFT
supports an interactive learning loop and end users with minimal technical knowledge can perform the deidentification work with
only a shallow learning curve.

(Interact J Med Res 2023;12:e46322) doi: 10.2196/46322

KEYWORDS

web-based system; deidentification; electronic medical records; deep learning; narrative free text; human in the loop; free text;
unstructured data; electronic health records; machine learning

Introduction

Narrative free-text data in electronic medical records (EMRs)
include a variety of clinical documents such as consultation
notes, nursing notes, progress notes, and discharge summaries,
which contain valuable information for analysis and research
to inform better patient care [1-3]. The free-text data can include
personally identifiable information (PII), for example, patient
name, date of birth, address, phone number, and patient
identifier, which can be used to identify an individual on its
own or with other information. It is necessary to deidentify the
free-text data by removing this PII before releasing to
researchers for secondary purposes where the reuse of the data
is not covered in patients’ informed consent forms or when
requested as part of a waiver of informed consent by an
institutional review board or any other human research ethics
committees, as required by legislation including the Privacy
Rule of the HIPAA (Health Insurance Portability and
Accountability Act) [4] in the United States and the Privacy
Act, 1988 [5], in Australia. However, manual deidentification
has been proven to be a time-consuming and labor-intensive
task [6].

In the past decade, researchers have investigated many different
automated deidentification approaches including rule-based
matching [7-9] and machine learning (ML) models [10-14].
Hand-written regular expressions and ad hoc knowledge
dictionaries are used in rule-based deidentification approaches
for a specific free-text data set [15]. In contrast, ML-based
deidentification approaches use manually annotated data to train
named entity recognition (NER) models, enabling the prediction
of PII entities from free-text data. Although rule-based methods
do not necessitate the preparation of annotated data, the rules
are challenging to generalize to other corpora without manual
adjustments from experienced domain experts [16]. The
Bidirectional Long Short-Term Memory-Conditional Random
Field (BiLSTM-CRF) has been proven to achieve state-of-the-art
or competitive results on the free text deidentification task
[17-19]. With the success of transformer models in the NLP
domain, some studies began to explore its use on deidentification
tasks [20-22]. Johnson et al [21] fine-tuned pretrained
transformer models and achieved a binary token-level F1-score
of 0.984 on the 2014 i2b2 test set. However, a benchmark study
[20] showed that BiLSTM-CRF achieved better performances
compared to transformer-based models. Another study
conducted by Tang et al [17] demonstrated that incorporating
the pretrained transformer language model as the word
embedding layer in BiLSTM-CRF led to an improvement in
the F1-scores on the 2014 i2b2 deidentification data set,

compared to using other word embeddings (eg, Word2Vec and
ELMo). Furthermore, several ensemble approaches that combine
multiple individual ML models have been proposed on
deidentification tasks [14,23,24]. By leveraging the strengths
of individual methods, these ensemble methods have
demonstrated improved performance on deidentification tasks.

The traditional workflow of the ML-based deidentification
approaches consist of three stages: (1) annotation: human
annotators manually tag all the PII in the free text. The
interannotator agreement is calculated to measure the quality
of the annotation [13]; (2) model training: ML experts train
models using the annotated free text; and (3) deidentification:
the PII predicted by the models are substituted by surrogates or
tags or removed completely. Although pretrained ML solutions
can potentially be used “out of the box,” there are significant
variations between hospitals, vendors, and countries in the
structure and content of EMRs and the nature of PIIs.
Furthermore, data custodians may require performance metrics
based on their specific data before gaining sufficient confidence
to use these tools. Therefore, manual annotation remains a
time-consuming process and is the main bottleneck in training
ML-based deidentification models [25,26]. To overcome this,
several annotation tools (eg, BRAT [27] and WAT [14]) have
been used to speed up the annotation stage [6,28]. Nevertheless,
the second and third stages of the workflow still require
considerable input from ML experts. In recent years, some
annotation tools (eg, ezTag [29], INCEpTION [30], and Prodigy
[31]) have integrated interactive learning for iteratively
retraining the models using the latest annotated free text to
provide preannotation suggestions, which automates the second
stage of the workflow. These tools can be used to handle some
of the deidentification task (ie, PII tagging). Aberdeen et al [32]
developed an open-source deidentification tool, MITRE
Identification Scrubber Toolkit (MIST), which comprises a
web-based graphical annotation tool, a training module, a
tagging module, a redaction and resynthesis module, and an
experiment engine. These modules work together using a
“tag-a-little, learn-a-little” loop strategy to complete the
deidentification task, bypassing the need for ML experts for the
second and third stages of the traditional deidentification
workflow. The annotation tool is used by annotators to tag the
PII from the free-text files. The training module trains a
conditional random field-based sequence tagger using these
annotated files. The tagging module automatically tags the PII
for the new files that can be manually corrected by the
annotators. Furthermore, MIST provides a workspace mode to
conveniently manage a corpus which needs to be deidentified.
However, many operations of MIST need to be done via the
command line, for example, creating a workspace, importing
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files into a workspace, and training models. The MIST server
needs to be restarted to get the newly trained model into effect.
Moreover, the end users of the MIST tool are required to have
the technical knowledge to run command lines.

Off-the-shelf tools [33] such as Amazon Comprehend Medical
[34], Clinacuity CliniDeID [35], and National Library of
Medicine (NLM) Scrubber [36], can be used to deidentify free
text directly without following the traditional deidentification
workflow. These 3 tools are all HIPAA-compliant, following
the HIPAA’s “Safe Harbor” method [14] to remove 18 types
of identifiers. Amazon Comprehend Medical is a cloud-based
service which needs the data be uploaded to its service end
point. This represents a significant barrier to adopting it for use
with EMRs, which are stored in a secure and internet
access-restricted environment. CliniDeID, originally a
commercial clinical text deidentification software, has recently
been made available as free open-source software since
November 2022. This allows for additional retraining on specific
data sets to enhance the model's performance. Although NLM
Scrubber can be installed locally, its performance cannot be
improved because it has no ability to learn from the end users’
free-text data, which may vary considerably from the data used
to develop the tools. Therefore, data custodians are responsible
for reviewing and evaluating the deidentification results
provided by these off-the-shelf tools to ensure it meets their
benchmarks. Another main obstacle for adopting the
off-the-shelf tools is that the PII types present in specific
free-text data outside of a HIPAA covered entity or country
(such as Australia) can be different from the 18 HIPAA PII
types.

In this study, we designed and implemented a web-based system,
deidentifying free text (DEFT), for tagging and substituting
designated PII in free-text data in EMRs with human
(annotators) in the loop. The system can be readily and easily
adopted for the free text deidentification task in secure and
internet access–restricted network environments. The main
features of the system are listed below:

• Web-based: the web-based deidentification system can be
easily accessed by multiple end users via a web browser.
Compared to desktop-based applications, web-based
applications are less hardware dependent and can easily be
updated and upgraded.

• Powered by deep learning models: we used a deep learning
NER model to recognize and tag PII entities from free-text
data.

• Preannotation bootstrapped by a semiautomatic learning
loop: following the learning loop we have proposed
previously [14], DEFT preannotates the free text using the
ML model that is automatically trained on the previous
annotated free text completed by the annotators.

• Customized PII types: the PII types can vary depending on
the free text corpus and different data sharing scenarios.
For example, full dates may need to be kept for future
research in a secure environment which can only be
accessed by ethically approved users [14].

• Suitable for nontechnical end users: experienced
health-domain annotators can complete the whole
deidentification task using DEFT. No technical or ML
knowledge is required.

• Simple and task-focused web user interface (UI): DEFT
makes the annotators focus on the annotation work through
a simple and well-designed web UI.

• Implements autosave: each annotation action, including
annotator name, PII entity positions, PII type, and
annotation time, is saved automatically.

• Fewer clicks for annotation: fewer clicks mean quick
annotation and less deidentification time.

• Supports project management and team collaboration: the
deidentification task can be managed as a project, which
can contain one or more data sets. The team annotators can
work on the same data set in the project at the same time
to accelerate the annotation process.

• Implements user access control: only approved users can
access specific projects.

• Uses central data storage: all the data can be stored in 1
central location which the DEFT server can access through
filesystem path. This avoids importing or transferring
thousands or millions of small free-text files across the
network.

Methods

System Architecture
DEFT has been designed to be simple and manageable, so end
users can easily conduct the deidentification work on their own
free-text data that are stored in a secure and internet
access–restricted environment. Figure 1 shows the overview of
the DEFT system architecture. DEFT communicates with the
central data storage by using a filesystem path to retrieve the
free-text data and generate deidentified data. The annotators
remotely access the DEFT web UI to annotate the free text via
their own devices. DEFT is responsible for all the business logic
processing. The data manager helps to manage projects and data
through the DEFT web UI and direct connection to the data
storage, respectively.

We implemented DEFT using Django, a high-level Python web
framework. As shown in Figure 1, DEFT comprises frontend
and backend modules. The frontend module was built with
HTML, CSS, and jQuery and has 2 different web UIs including
an end user UI and admin UI. The former is used by the
annotator to tag the PII and the latter is for the data manager to
manage users, models, projects, and PII types. The backend
consists of 2 components, that is, business logic and database.
The first one is the controller that receives the requests from
the frontend and invokes the relevant business logic to produce
the responses which are sent back to the frontend. The second
one has the persistence component built with SQLite and
interacts with the business logic component to store all the
application data such as project information, and PII positions
and types.
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Figure 1. Overview of the DEFT system architecture. DEFT: deidentifying free text; UI: user interface.

Project-Based Deidentification Work
In the DEFT system, the deidentification work is organized as
projects which must have at least 1 data set. Multiple projects
can be processed at the same time. A project is created by the
users for a deidentification task of a new free text corpus.
Multiple data sets can be added into the project according to
the users’ requirements. The users can flexibly customize any
number of PII types with different display colors for the project
and control who has access to the project. The system does not
provide default PII types, because these can vary depending on
the project. The raw data files are stored in specific data storage
outside the DEFT system and the access path is configured in
DEFT for the relevant project. Users can import the data files

(txt format) into DEFT manually or wait for the system to import
them automatically. The importing operation only saves the file
names into the DEFT database rather than the file contents so
that all the identified data can be safely maintained in specific
data storage. Figure 2 shows an example of a deidentification
project structure. A project named “Clinical Notes” is created
and 2 data sets are added with the names “Discharge
Summaries” and “Progress Notes,” respectively. A list of PII
types (PERSON, date of birth [DOB], ADDRESS, PHONE,
ID) are configured for the project according to the users’
requirements. The user shown in solid black is assigned access
to the project as the annotator. All the project configurations
can be done via the admin UI by the data managers of the team.
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Figure 2. An example of a deidentification project structure and access control. DOB: date of birth; PII: personally identifiable information.

Deep Learning NER Model
In the DEFT system, we used the BiLSTM-CRF architecture
to train a NER model that can identify word spans related to
specific PII types in the working text. Although an ensemble
model may perform better than a single BiLSTM-CRF model,
we selected the latter for DEFT considering its competitive

performance and faster training time, noting that DEFT may be
deployed in settings where computing resources are constrained.
The Python library FLAIR [37] was used to implement the
BiLSTM-CRF NER model. The pretrained RoBERTa model
[38] was selected to generate input representations in our model.
Figure 3 shows the model architecture.
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Figure 3. Deep learning named entity recognition model architecture. BiLSTM: Bidirectional Long Short-Term Memory; CRF: conditional random
field; LSTM: Long Short-Term Memory.

Learning Loop
The core of the DEFT system’s workflow is a learning loop,
which comprises 3 elements: end user UI, annotated free text,
and ML model, as shown in Figure 4. At the beginning of the
deidentification work for a new project, there is no ML model
in the system. The deidentification process follows the following
six steps:

1. Feed raw free text into DEFT system. An initial set of raw
free-text files are loaded into the end user UI where the
annotators begin to manually tag PII in the raw free text.
The end user UI provides a simple and task-focused
interface to the annotators so that the annotation can be
done quickly and easily.

2. Annotate raw free text or correct preannotated free text.
Figure 5 shows a screenshot of the end user UI which
contains 4 main areas: file list area, PII type area, annotation
work area, and PII list area. First, the annotator selects 1
file in the file list area to load its free text content into the
annotation work area and clicks on 1 PII type in the PII
type area. Second, the annotator reviews the free text and
tags the words using double left click or word spans using
click drag-and-release that are related to the selected PII
type. The PII entities will be surrounded by colored boxes
with the PII type underneath the words. Incorrectly tagged
PII entities can be removed by single left click on the entity
text. Finally, the tagged PII entities are listed in the PII list
area with detailed information about start index, end index,

PII entity type, PII entity text, and annotator name. The
annotator needs to change the “Edit” mode to “Complete”
mode for marking the completion of the annotation work
for the current working file. The above mentioned PII entity
details, except PII entity text, are automatically saved in
the DEFT database so that they can be integrated with the
raw free-text file contents to generate the annotated free-text
files for model training. Furthermore, not having PII entity
text stored in the DEFT system protects the identified data.

3. Train ML models. Once the completed amount of the
annotated free-text files reaches the preconfigured model
retraining threshold which is the number of clinical notes
(eg, 200 clinical notes), the system starts the ML model
training process, which splits the annotated data into
training, validation, and test sets. The model is automatically
trained in the backend and loaded into the system after that.

4. Preannotate raw free text. Another small set of free-text
files, that has been preannotated by the trained model from
Step 3, are assigned to the annotators to add the PIIs which
the model does not preannotate or to correct incorrect PIIs
that the model has preannotated, via the end user UI. The
added or corrected PII entity details are added into the
system database.

5. Iterative ML model training. If the number of the new
completed files reaches the retraining threshold, it will
trigger the ML model to be retrained on all the annotated
free-text files. Steps 2, 3, and 4 are iteratively conducted
until the performance of the model meets the specified
benchmark for the data set. In the DEFT system, we use
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the strict entity-level microaverage F1-score, which is the
primary metric in previous deidentification challenges
[16,39,40], to evaluate the performance of the model and
deidentification work.

6. Deidentify raw free text. The final model is used to
deidentify the remaining free text in the data set, including
automatically tagging the PIIs and replacing the PIIs with
the special tags. For example, the person names are replaced
by “<**PERSON**>” in the deidentified free text.

Figure 4. Learning loop of DEFT system. (1) Feed raw free text into DEFT system; (2) annotate raw free text or correct preannotated free text; (3)
train ML models; (4) preannotate raw free text; (5) iterative ML model training; and (6) deidentify raw free text. DEFT: deidentifying free text; ML:
machine learning; UI: user interface.

Figure 5. A demo of the end user UI for the annotators. The patient information is dummy data. PII: personally identifiable information; UI: user
interface.
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DEFT Functionalities
Table 1 describes the main functionalities of the DEFT system
which are grouped according to the 2 DEFT web UIs. The admin
UI includes the management components of the key elements
such as projects, data sets, PII types, and users. The
functionalities of the end user UI are mainly focused on the
annotation work, for example, tagging the PII, changing the file
status, and preannotation. Currently, only txt format data files

are supported in DEFT. There are two export options: (1) export
the annotated data files in the XML format which include the
raw free text and all the PII entities (Figure S1 in Multimedia
Appendix 1); the annotated XML data files could be a valuable
data source for future deidentification research; and (2) export
the deidentified data files in TXT format (Figure S2 in
Multimedia Appendix 1). The file contents are the same as the
original one except that the PII words are replaced by the special
tags.

Table 1. The main functionalities of the DEFTa system.

DescriptionUIb and functionality

Admin

Project management • Create or delete or modify project information
• Configure the project data path
• Assign user access right

Data set management • Create or delete or modify data set information
• Import data file names
• Export all the annotated data files
• Export all the deidentified data files

Data file management • Create or delete or modify data files
• Export single annotated data file
• Export single deidentified data file

PIIc type management • Create or delete or modify PII types

Model management • Review all the trained models of the project

User management • Create or delete or modify users

End user

Project list • List accessible projects

Data set list • List the data sets of the selected projects

Annotation dashboard • List all the files of the selected data set
• Open 1 file
• Tag the PII entities in the free text

Auto save • The add or remove PII actions are saved automatically

Preannotation • Pretag the possible PII entities by the trained MLd model when the users open a file

Hide completed files • Filter completed files out from the data file list

File status management • Switch the file status between “Edit” and “Complete”

aDEFT: deidentifying free text.
bUI: user interface.
cPII: personally identifiable information.
dML: machine learning.

Ethics Approval
This study has obtained ethical approval from the South Eastern
Sydney Local Health District Human Research Ethics
Committee (reference 2019/ETH12625) and the Population
Health Services Research Ethics Committee (reference number

2020/ETH01614). The ethics committees allow the data usage
for this study without additional consent. The experiments in
this study were conducted in the E-Research Institutional Cloud
Architecture [41], a secure cloud computing infrastructure for
individuals working with sensitive data.
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Results

Overview
We selected 2 deidentification systems (MIST and NLM
Scrubber) for functionality comparison with DEFT. We chose
these systems because MIST has a similar design strategy of
“human in the loop” to DEFT, and NLM Scrubber is an
accessible open-source off-the-shelf deidentification system.
We also considered INCEpTION, ezTag, and Prodigy, which
are text annotation systems with interactive learning loops,
because they can be used for the deidentification task with extra
effort from technical or ML experts. The system features we
compared are (1) support for project-based free text file
management; (2) support for user access control; (3) support
for customized PII (NER) types; (4) support for bulk file import;
(5) support for automated preannotation based on a pretrained
model; (6) support for auto save of the tagging actions; (7)
support for interactive learning loop; (8) support for annotated
data export; (9) support for deidentified data export; (10)
suitability for nontechnical end users; (11) support for team
collaboration; (12) web-based system; (13) central data storage;
(14) off-the-shelf; and (15) autotag matches (all occurrences
are automatically tagged when annotators tag a PII entity in the
whole working free text). Figure 6 shows that DEFT, MIST,
and INCEpTION support the user access control functionality,
which is important in deploying the systems for team
collaboration on the deidentification task. Otherwise, any
devices on the same network can access the system via the
system’s URL to potentially access the identified data. Although
ezTag provides a session-based login, it is not a secure way to
control access because anyone who has the session URL can
access the project freely. Both MIST and Prodigy require end
users to use a command-line interface to configure the projects
or data sets and retrain the models in the interactive learning
loop. MIST and ezTag need to manually trigger the model
retraining and preannotation from the command-line interface

and the web UI, respectively. When starting the Prodigy system,
a path to the free-text data needs to be configured. Therefore,
it partially supports the project management and bulk file import.
Different from other systems, MIST must manually save each
tagging action by the user clicking on the save button. In both
the INCEpTION and ezTag systems, importing the free-text
data requires transferring the files from the original data location
to the specified location using the web UI, while MIST uses the
command-line interface to do the same thing. This could be a
bottleneck when importing large volumes of data sets due to
network delays. Because NLM Scrubber is an off-the-shelf
desktop software, most of the comparison functionalities are
not supported by it. All the systems except NLM Scrubber
cannot be used “out-of-the-box.” Only the MIST system
provides “Autotag matches” functionality.

Fewer mouse clicks make the annotation process more efficient.
We counted the mouse clicks of the add-PII and remove-PII
operations for all the selected systems except NLM Scrubber,
which is pretrained and doesn’t support annotation. The
“drag-and-release” action is counted as 1 mouse click. As shown
in Table 2, DEFT and Prodigy had the fewest clicks for both
operations. MIST and INCEpTION needed 3 mouse clicks to
annotate a PII entity. However, MIST provides an “Autotag
matches” functionality, which can automatically tag all the
occurrences of the same word spans of the selected PII entity
in the whole working file. ezTag needed the most mouse clicks
to remove a tagged PII entity.

We evaluated the performance of our model by comparing it
with 5 benchmark models [14,17,18,23,24] on the 2014 i2b2
data set. The microaverage strict entity–level scores and binary
PII token–level scores are reported in Table 3. Our model
achieved the highest strict entity–level recall and F1-scores at
0.9563 and 0.9627, respectively. Table S1 in Multimedia
Appendix 1 lists the hyperparameters used for model training.
The microaverage scores by i2b2 category for strict entity
matching are shown in Table S2 in Multimedia Appendix 1.
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Figure 6. Comparison of the selected tools and DEFT. DEFT: deidentifying free text; MIST: MITRE Identification Scrubber Toolkit; NER: named
entity recognition; NLM: National Library of Medicine; PII: personally identifiable information.

Table 2. Mouse click comparison of add-PIIa and remove-PII operations.

ProdigyezTagINCEpTIONNLMd ScrubberMISTcDEFTbOperation

1-21-23N/Af31-2Add-PIIe

132N/A21Remove-PII

aPII: personally identifiable information.
bDEFT: deidentifying free text.
cMIST: MITRE Identification Scrubber Toolkit.
dNLM: National Library of Medicine.
eThe mouse-click number of add-PII operation for DEFT, ezTag, and Prodigy can be 1 or 2, depending on whether the relevant PII type has been selected
or not.
fN/A: not applicable.
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Table 3. Microaverage scores comparison on the 2014 i2b2 data set.

Binary PIIa token-levelStrict entity-levelModel architectureModel (reference)

F1-scoreRecallPrecisionF1-scoreRecallPrecision

0.98280.97280.9930.95110.9380.9646Ensemble modelLiu et al [24]

0.98610.98060.99160.95730.94450.9704bEnsemble modelKim et al [23]

0.987b0.9838b0.99020.9550.95020.9599BiLSTM-CRFc (BERTd)Tang et al [17]

0.98320.97550.9910.95790.95060.9653BiLSTM-CRFCatelli et al [18]

0.98640.97860.9943b0.96240.95590.969Ensemble modelLiu et al [14]

0.98290.97660.98920.9627b0.9563b0.9692BiLSTM-CRF (RoBERTa)Our model

aPII: personally identifiable information.
bThe best result for each metric.
cBiLSTM-CRF: Bidirectional Long Short-Term Memory-Conditional Random Field.
dBERT: Bidirectional Encoder Representations from Transformers.

Use Case
To evaluate its efficiency and performance, we used DEFT to
deidentify clinical notes for the project CardiacAI [42].
CardiacAI is a prospective data repository that collects EMR
data for patients with cardiac issues who are admitted to a group
of participating hospitals in New South Wales, Australia. The
EMR data are linked to state-wide hospital and emergency
department visits, the state’s death registry, as well as mobile
health remote monitoring data. The aim of this data collection
is to enable collaborative research, facilitate the use and rapid
translation of state-of-the-art tools and technologies, and
ultimately drive improvement in patient care and outcomes.
The CardiacAI data repository holds data from January 1, 2017
onwards. The repository currently holds EMRs of 44,201
patients with 61,721 individual hospitalizations to a cardiac,
cardiothoracic, or vascular surgical specialty. There are
2,087,737 clinical documents including discharge summaries,
progress notes, and other semistructured forms with an average
of 34 (SD 44) documents per hospitalization. Discharge
summaries have undergone some rule-based deidentification
where the document header, which contains structured identifier
fields, has been removed. However, embedded identifiers remain
within the unstructured text.

The DEFT system was deployed on a workspace with 32 GB
memory and 8 vCPU in the E-Research Institutional Cloud
Architecture [41] environment. A project named “CardiacAI,”
and 2 data sets named “Discharge Summary” and “Progress
Notes” were created in the system. According to the data content
and research requirements, 5 PII types (PERSON, identification
number [IDN], DOB, PHONE, ADDRESS) were defined for
the project. At the beginning, we randomly selected 400 clinical
notes including 200 discharge summaries and 200 progress
notes to be manually annotated using the DEFT end user UI by
1 annotator who is an experienced health-domain data analyst.
An intermediate NER model was automatically trained by DEFT
using the 400 clinical notes with a split ratio of 0.8, 0.1, and 0.1
for training, validation, and test, respectively. Table 4 shows
the model performance on the test set. Nearly 81% PII entities

were person type and only 2 were address type. The model
achieved a micro-F1-score of 0.9432.

To compare annotation time with and without
auto-preannotation, we randomly selected another 200 clinical
notes that consisted of 100 discharge summaries and 100
progress notes and split them into 10 rounds, of which each
round contained 10 discharge summaries and 10 progress notes.
We also considered the text length when splitting the data to
make sure that the compared rounds had similar total words as
other rounds. The annotator manually tagged the PIIs in the first
5 rounds without auto-preannotation and continued to complete
the last 5 rounds with auto-preannotation enabled. Each round
was completed in a single session and the annotation time was
recorded. As shown in Table 5, the total time of 5 rounds
with-preannotation was about 58 minutes, which was
approximately 40% less than the total time of 5 rounds without
preannotation (~98 minutes). Moreover, the annotation of the
last 5 rounds (with preannotation) was much quicker than the
one of the first 5 rounds, despite there being more PII entities
in the last 5 rounds. Through the 5-round comparison, the
preannotation by the trained model sped up the annotation work
by 43% (95% CI 33.9-52.1; P<.001).

To compare manual annotation performance without and with
preannotation, a gold standard corpus was created by having 2
annotators independently review and correct the annotations of
the 200 clinical notes. All disagreements were resolved through
a consensus meeting between the 2 annotators. The performance
results are shown in Table 6. Manual annotation with
preannotation by the pretrained model achieved higher overall
microaverage recall and F1-scores by 0.013 and 0.0053,
respectively. Although there were a few false negative and
positive errors on the PHONE and ADDRESS types, manual
annotation with preannotation demonstrated higher accuracy
on the PERSON type (the majority type within the data set)
than manual annotation without preannotation.

We reconfigured the retraining threshold to 200 to trigger the
system to retrain the model using the whole 600 clinical notes.
The results are shown in Table 7. Although the test sets were
different between this training and the previous training, we do
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observe that the overall F1-score increased by 0.0075, compared
to the previous intermediate model trained on 400 clinical notes.
The new model improved the F1-score of DOB and PHONE

PII types by large margins of 0.1367 and 0.1298, respectively.
Moreover, the recall, which is the most important metric for the
deidentification tasks, was improved for each PII type, except
ADDRESS.

Table 4. The NERa model performance on the test set from the corpus with 400 clinical notes.

PII entity numbermicro-F1-scoreRecallPrecisionPIIb type

4440.9580.95050.9657PERSON

570.98210.96491IDNc

260.840.80770.875DOBd

220.72730.72730.7273PHONE

20.40.50.3333ADDRESS

5510.94320.93470.9519Overall

aNER: named entity recognition.
bPII: personally identifiable information.
cIDN: identification number.
dDOB: date of birth.

Table 5. Annotation time comparison.

With preannotationWithout preannotation

Word numberPII entity
number

Annotation
time (min)

Clinical note
number

RoundWord numberPIIa entity
number

Annotation
time (min)

Clinical note
number

Round

27741136:28201a26878113:03201

41531847:55202a408911715:56202

53691799:31203a519815519:08203

740418512:13204a713313920:24204

12,30430022:08205a11,50318929:05205

32,00496158:15100Total30,61068197:36100Total

aPII: personally identifiable information.

Table 6. Performance comparison without and with preannotation.

With preannotationWithout preannotation

micro-F1-scoreRecallPrecisionPII Typemicro-F1-scoreRecallPrecisionPIIa Type

0.99170.98510.9983PERSON0.98250.96750.9980PERSON

111IDN111IDNb

111DOB111DOBc

0.96670.96670.9667PHONE111PHONE

0.923110.8571ADDRESS111ADDRESS

0.9922d0.9886d0.9958Overall0.98690.97560.9985dOverall

aPII: personally identifiable information.
bIDN: identification number.
cDOB: date of birth.
dThe best result for each metric between performance without and that with preannotation.
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Table 7. The NERa model performance on the test set from the corpus with 600 clinical notes.

PII entity numbermicro-F1-scoreRecallPrecisionPIIb type

5280.95020.95830.9423PERSON

840.9880.97621IDNc

650.97670.96920.9844DOBd

350.85710.85710.8571PHONE

60.66670.51ADDRESS

7180.95070.95260.9487Overall

aNER: named entity recognition.
bPII: personally identifiable information.
cIDN: identification number.
dDOB: date of birth.

In order to evaluate the deidentification efficiency, we used the
trained model to deidentify CardiacAI clinical notes that
summarized the encounters of patients who have had heart
failure, containing on average about 170 words. The whole
process took about 95 hours to export 280,785 deidentified
clinical notes (about 0.82 seconds per clinical note). There are
on average about 5 PII entities per clinical note.

Discussion

Principal Findings
We have presented the design and implementation of DEFT, a
simple web-based deidentification system with interactive
learning loop. DEFT provides a task-focused web UI to end
users so that annotation of PII can be done quickly and easily.
In addition, an admin web UI is provided to manage the projects,
users, and team collaboration on the deidentification task. The
DEFT system can be deployed on a central server to provide
deidentification services to multiple teams within the same
network environment at the same time through user access
control functionality.

The results of the functionality comparison showed that our
DEFT system is better than the selected comparison systems
on the deidentification task, in terms of the ability to customize
the task, ease and security of management of users and files,
automation of the interactive learning loop, and central data
storage.

DEFT can easily customize PII types at the project level using
the admin web UI. It provides flexibility for determining the
level of deidentification according to risk assessment and
analysis requirements of the project. The selected systems which
we compared with DEFT have similar customization
functionality, with the exception of NLM Scrubber. However,
only INCEpTION and ezTag provide a web UI for this function.
MIST and Prodigy uses either a configuration file or command
line to predefine PII types. NLM Scrubber uses fixed
HIPAA-compliant PII types, which restrict the adoption of the
system outside of a HIPAA-covered country or organization
[6].

DEFT has a 2-level file management structure (ie, project and
data set) which allows the users to organize the data more
flexibly, compared to the 1-level structure (ie, project) of the
other systems. For example, the deidentification project may
have many different types of clinical notes. Users can create
different data sets for each type of clinical note. Like
INCEpTION, DEFT can easily manage user credentials and
assign user access to the project level through the admin web
UI. However, in the MIST system, user management and access
control need to be done from a command-line interface, and all
the users share 1 project access key. When starting up the
Prodigy system, the users need to configure an input data source.
Therefore, the different project users cannot work on the system
at the same time. Moreover, there is no user access control
functionality in Prodigy. ezTag uses a session-based login to
generate a unique URL for each user to manage the user access.
However, the session can be accessed by anyone with the unique
URL, so it is not suitable for annotating sensitive information
in EMR free-text data.

DEFT supports a fully automated interactive learning loop. The
model training process is triggered when the newly annotated
files reach the preset retraining threshold. The retrained model
is automatically loaded for the relevant project. When the
annotator opens a nonannotated file, the model automatically
preannotates it to provide suggestions for the annotator. In
contrast, MIST, Prodigy, and ezTag need human manual
operations during the learning loop. MIST retrains a model and
preannotates the free-text files via a command-line interface.
Moreover, the system needs to be restarted to load the retrained
model. Similarly, Prodigy also needs different command lines
to perform retraining and preannotation operations. Users of
ezTag need to click the “Auto Annotation” and “Train” buttons
to trigger the relevant tasks. The real-world use case study we
present demonstrated that DEFT’s annotation speed can be
increased by 43% with the automated preannotation in the
learning loop. Furthermore, the DEFT system can use only 600
annotated clinical notes to achieve good performance with an
F1-score of 0.9507, which is greater than 0.95, the rule-of-thumb
benchmark for evaluating the reliability of a deidentification
system [16,40]. The low scores for ADDRESS PII entity as
shown in Tables 4 and 7 may be caused by the lack of training
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samples, as there were only 44 and 55 ADDRESS entities in
the training sets of 400 and 600 clinical notes, respectively. The
model performance will continually improve as the amount of
annotated free-text data increases. We also evaluated the
annotation time and accuracy of manual annotation without and
with preannotation. Using preannotation during the manual
annotation process resulted in a time savings of 43% and a
micro-F1-score improvement of 0.005 compared to manual
annotation performed without preannotation.

The design of DEFT allows the raw free-text data to be stored
in a central data storage location which is under the control of
the researchers or data custodians. The system-related data, such
as project and data set information, users, PII index and type
details, and the free-text file names, are saved in DEFT’s
database. All the raw data and exported data are managed
centrally by the data manager. This not only protects the
identified data from unauthorized access, but also avoids
transferring large volumes of data through the network. A data
source path is required when starting up the Prodigy system and
therefore data can be stored at a central location. However, none
of the other systems support this.

In the traditional annotation process, more than 2 annotators
are needed to generate a gold standard data set. The
interannotator agreement is measured to evaluate the annotation
reliability between different annotators. Although a single
annotator was used in this case study, the interactive learning
loop enabled the model and the annotator to suggest and correct
each other to continually improve the model performance.
However, DEFT can easily perform the traditional annotation
process. For example, the data manager creates a data set named
“gold standard” in the project. In total, 2 annotators are required
to tag the PIIs from all the files in the data set. Another annotator
as an audit changes the file status to completion after reviewing
the annotation results. The NER model will be trained on the
gold-standard data set.

Limitations
In DEFT, we preannotate all the PII from the free text using the
trained NER model. The annotators need to review the whole

text to correct the preannotations. In contrast, INCEpTION and
Prodigy combine preannotation with active learning which
queries the user for feedback (accept, reject, or skip) on the
annotation suggestions that are most informative to the model
[30]. Active learning can achieve rapid and accurate annotation
with less annotation time [43]. Integration of active learning
within the learning loop could enhance the next version of
DEFT. Moreover, we will explore fine-tuning pretrained
transformer language models for NER in DEFT to improve the
accuracy of deidentification. Furthermore, implementing
“Autotag matches” in DEFT could have the potential to further
decrease manual effort involved in the annotation process.
Another limitation of DEFT is that it relies solely on deep
learning models. The system’s performance could potentially
be enhanced by incorporating a hybrid method that combines
knowledge-based methods (such as predefined regular
expressions or knowledge dictionaries) and deep learning. The
evaluation results in this study are derived from clinical notes
which were annotated by a single annotator. This may introduce
potential reliability issues when assessing the deidentification
performance. To address this, an annotation process, which is
manually annotated by 3 annotators (2 annotators and 1
adjudicator), is needed to be introduced in the next version of
DEFT.

Conclusions
DEFT is a web-based deidentification system, which is designed
for health domain researchers and data custodians to easily
deidentify free-text data in EMRs with the support of an
interactive learning loop. End users can perform all the
operations through a well-designed web UI. DEFT has many
good features to help manage and organize the deidentification
tasks. In particular, the central data storage feature ensures that
the identified data are protected properly in a central location
without transfer through the network. The real-world use case
demonstrated that DEFT can speed up the annotation process
and quickly complete the deidentification work for large
volumes of data with high reliability. The source code of the
DEFT system is available at GitHub [44].
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Abbreviations
BiLSTM-CRF: Bidirectional Long Short-Term Memory-Conditional Random Field
DEFT: deidentifying free text
DOB: date of birth
EMR: electronic medical record
HIPAA: Health Insurance Portability and Accountability Act
IDN: identification number
MIST: MITRE Identification Scrubber Toolkit
ML: machine learning
NER: named entity recognition
NLM: National Library of Medicine
PII: personally identifiable information
UI: user interface

Edited by A Mavragani; submitted 08.02.23; peer-reviewed by Y Tchouka, S Meystre; comments to author 05.04.23; revised version
received 31.05.23; accepted 24.07.23; published 25.08.23

Please cite as:
Liu L, Perez-Concha O, Nguyen A, Bennett V, Blake V, Gallego B, Jorm L
Web-Based Application Based on Human-in-the-Loop Deep Learning for Deidentifying Free-Text Data in Electronic Medical Records:
Development and Usability Study
Interact J Med Res 2023;12:e46322
URL: https://www.i-jmr.org/2023/1/e46322
doi: 10.2196/46322
PMID: 37624624

©Leibo Liu, Oscar Perez-Concha, Anthony Nguyen, Vicki Bennett, Victoria Blake, Blanca Gallego, Louisa Jorm. Originally
published in the Interactive Journal of Medical Research (https://www.i-jmr.org/), 25.08.2023. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Interactive
Journal of Medical Research, is properly cited. The complete bibliographic information, a link to the original publication on
https://www.i-jmr.org/, as well as this copyright and license information must be included.

Interact J Med Res 2023 | vol. 12 | e46322 | p. 17https://www.i-jmr.org/2023/1/e46322
(page number not for citation purposes)

Liu et alINTERACTIVE JOURNAL OF MEDICAL RESEARCH

XSL•FO
RenderX

https://www.i-jmr.org/2023/1/e46322
http://dx.doi.org/10.2196/46322
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37624624&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

