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Abstract

Background: Computational signal preprocessing is a prerequisite for developing data-driven predictive models for clinical
decision support. Thus, identifying the best practices that adhere to clinical principles is critical to ensure transparency and
reproducibility to drive clinical adoption. It further fosters reproducible, ethical, and reliable conduct of studies. This procedure
is also crucial for setting up a software quality management system to ensure regulatory compliance in developing software as a
medical device aimed at early preclinical detection of clinical deterioration.

Objective: This scoping review focuses on the neonatal intensive care unit setting and summarizes the state-of-the-art
computational methods used for preprocessing neonatal clinical physiological signals; these signals are used for the development
of machine learning models to predict the risk of adverse outcomes.

Methods: Five databases (PubMed, Web of Science, Scopus, IEEE, and ACM Digital Library) were searched using a combination
of keywords and MeSH (Medical Subject Headings) terms. A total of 3585 papers from 2013 to January 2023 were identified
based on the defined search terms and inclusion criteria. After removing duplicates, 2994 (83.51%) papers were screened by title
and abstract, and 81 (0.03%) were selected for full-text review. Of these, 52 (64%) were eligible for inclusion in the detailed
analysis.

Results: Of the 52 articles reviewed, 24 (46%) studies focused on diagnostic models, while the remainder (n=28, 54%) focused
on prognostic models. The analysis conducted in these studies involved various physiological signals, with electrocardiograms
being the most prevalent. Different programming languages were used, with MATLAB and Python being notable. The monitoring
and capturing of physiological data used diverse systems, impacting data quality and introducing study heterogeneity. Outcomes
of interest included sepsis, apnea, bradycardia, mortality, necrotizing enterocolitis, and hypoxic-ischemic encephalopathy, with
some studies analyzing combinations of adverse outcomes. We found a partial or complete lack of transparency in reporting the
setting and the methods used for signal preprocessing. This includes reporting methods to handle missing data, segment size for
considered analysis, and details regarding the modification of the state-of-the-art methods for physiological signal processing to
align with the clinical principles for neonates. Only 7 (13%) of the 52 reviewed studies reported all the recommended preprocessing
steps, which could have impacts on the downstream analysis.

Conclusions: The review found heterogeneity in the techniques used and inconsistent reporting of parameters and procedures
used for preprocessing neonatal physiological signals, which is necessary to confirm adherence to clinical and software quality
management system practices, usefulness, and choice of best practices. Enhancing transparency in reporting and standardizing
procedures will boost study interpretation and reproducibility and expedite clinical adoption, instilling confidence in the research
findings and streamlining the translation of research outcomes into clinical practice, ultimately contributing to the advancement
of neonatal care and patient outcomes.
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Introduction

Background
Premature infants are those born at <37 weeks gestational age,
ranging from extreme preterm (23 weeks’ gestation) to late
preterm (37 weeks’ gestation), and are defined as having very
low birth weight of <1500 g. These extremely premature infants
have a higher risk of death, and surviving infants are highly
prone to physical, cognitive, and emotional impairment [1]. The
patients usually have a long length of stay, ranging from <10
to >120 days [2], in the neonatal intensive care unit (NICU),
where high-fidelity physiological changes are monitored to
observe their health status and signs of deterioration. During
this long length of stay, a large amount of data from infants are
generated and not typically electronically aggregated for
permanent storage [3]. With the advent of electronic health
records, relevant patient information is easily available for
advanced data analytics that can be used to improve health
outcomes. The records contain demographics, etiology,
pathology, medication, and physiology information.
Physiological changes are regularly monitored in preterm
infants, notably, electrocardiogram (ECG), oxygen saturation
(SpO2), heart rate (HR), respiratory rate, arterial blood pressure,
electroencephalography (EEG), and temperature. Some
advanced centers around the world have started linking the
information derived from the electronic health records data with
the continuously monitored physiological information for
permanent storage, more frequently in lower resolution, which
facilitates various data analytics [4-6]. Compared with
intermittent assessment and review, continuous capturing and
analysis of the physiological data from the standard bedside
monitors allow for a better understanding of trends and have
been shown to improve outcomes of infants in the NICU [5].

Clinical decision support systems (CDSSs) can integrate clinical
and physiological information to provide automated support in
patient care planning to facilitate the diagnostic process and
therapy planning, generate critical alerts and reminders, and
predict the risk of patient deterioration. CDSSs have the
potential for a positive impact in improving clinical and
economic measures in the health care system [7-9]. The
technological advancement that allowed storing big data, as
well as the advancement of artificial intelligence (AI), has given
rise to machine learning (ML)– and AI-based CDSSs aiming
to build data-driven models to predict adverse outcomes in
premature infants ahead of clinical diagnosis time [10-12].

The steps of building the ML pipeline to predict adverse
outcomes involve several intermediate computational steps
using the physiological data, of which data preprocessing is the
first indispensable step. Namely, in the NICU, physiological
signals are collected using a diverse range of devices, which
introduce a number of artifacts such as environmental artifacts

(eg, device connection failure, equipment noise, electrosurgical
noise, and power line interferences); experimental or human
error due to patient movement during data acquisition, incorrect
or poor contact of the electrodes, and other contact noise; and
artifacts due to muscle contraction, cardiac signals, and blinking
[13,14]. These noises distort signals and may adversely affect
model generalization capability and predictive power [10].

Although recently much progress has been made in building
ML models using neonatal physiological data, there are
limitations in the detailed reporting of the preprocessing
techniques of these signals [15], which in turn hinder the
reproducibility of the methods and results. In AI-powered
software as a medical device (SaMD), this is especially
important as the implementation of a software quality
management system (QMS) is only possible by following the
best practices and adhering to relevant regulatory standards and
guidelines for medical devices, such as ISO 13485, IEC 62304,
and IEC 82304-1. Beyond market access considerations, the
ongoing international discourse on the regulation of medical
software is specifically concentrated on AI and ML. This focus
is a response to their growing applications, demanding increased
attention from regulatory bodies such as the Australian
Therapeutic Goods Administration and the US Food and Drug
Administration [16]. Thus, it is crucial to adhere to a
standardized protocol following clinical principles guided by
domain experts and regulatory requirements while preprocessing
the signals and reporting these techniques in detail; this ensures
the reproducibility of the methods, allowing transparency in
their clinical adoption.

Objectives
As the first step in bridging the gap in their reproducibility for
clinical adoption, this review aims to identify studies that used
computational methods to analyze premature infants’
physiological signals for detecting adverse outcomes. The
review describes different tools and techniques used to
preprocess physiological signals and provides recommendations
on what aspects need further details for the clinical adoption of
the techniques. The remainder of the paper is organized as
follows: the Methods section explains the detailed search and
screening process, while the Results section begins with an
overview of the reviewed studies, followed by a detailed
analysis. The Discussion section highlights the key reporting
patterns identified in this review along with their shortcomings
and provides recommendations for transparent reporting of
future studies as it allows for accurate reproduction of the results
and makes them usable in the clinical setting [17]. A summary
of the work concludes the paper.
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Methods

Search Strategy
The database searches and study screening were conducted
following the recommendations of PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses)
guidelines [18] and the Centre for Reviews and Dissemination
guidance for undertaking reviews in health care [19].

Database and Search Strategies
A systematic database search was conducted on 5 databases:
PubMed, IEEE, Web of Science, Scopus, and ACM Digital
Library. The keywords were categorized into four concepts,
which were then merged using the “AND” operator: concept
1—neonates or preterm infants; concept 2—vital signs or
physiological signals; concept 3—computational techniques or
signal processing; and concept 4—outcomes relating to
neonates. Within each of these concepts, a combination of
keywords and MeSH (Medical Subject Headings) terms were
used to conduct the search process. The keywords under each

concept were combined by the “OR” operator. The searches
were limited to only the titles and abstracts. Table 1 shows the
list of keywords and Medical Subject Headings terms used to
search the database.

The search was done on January 9, 2023, and the publication
year of the papers was limited to 2013 to 2023. The reason for
choosing the 10-year range was to report on recent techniques
and tools, as the devices and computational tools used >10 years
ago may be obsolete. Scopus, Wiley Online Library, and Web
of Science have an additional filter for choosing the subject
area. This was used to restrict the subject areas to
multidisciplinary, engineering, computing, and statistics. This
was done to identify more papers on multidisciplinary areas
through these databases, as PubMed covers all the major medical
and health informatics databases. The combination of the 5
databases ensured that all medical, information technology, and
multidisciplinary research papers were included in the database
search. The search was restricted to English-language articles.
Finally, review articles were excluded from the search.

Table 1. List of keywords and MeSH (Medical Subject Headings) terms used to conduct the database search.

Search strategyConcepts

Concept 1: neonates or preterm babies

“Infant, Premature”MeSH terms

“premature” OR “preterm” OR “neonat*” OR “newborn” OR “infant” OR “nicu” OR “neonatal intensive
care unit”

Keywords

Concept 2: physiological signals or vital signs

“Vital Signs” OR “Physiology”MeSH terms

“physiolog*” OR “ecg” OR “heart rate” OR “electrocardiography” OR “vital sign*” OR “physiomarker”
OR “biomarker” OR “hrv”

Keywords

Concept 3: computational techniques or signal processing

“Signal Processing, Computer-Assisted”MeSH terms

“signal *” OR “predict*” OR “detect*” OR “comput*”Keywords

Concept 4: outcomes

NoneMeSH terms

“sepsis” OR “mortality” OR “length of stay” OR “intraventricular hemorrhage” OR “hypoxi*” OR “apnea”
OR “necrotising entercolitis” OR “necrotizing entercolitis”

Keywords

Screening and Study Selection
The initial screening of the databases led to 3585 papers. Of
these, 590 (16.46%) papers were manually identified as
duplicates and excluded from the analysis. One paper was
identified as a duplicate by the automation tool and removed.
The remaining 2994 (83.51%) papers were subjected to title
and abstract screening using the Rayyan Intelligent Systematic
Review application (Qatar Computing Research Institute) [20].

Several inclusion criteria were set to select papers for full-text
review. The criteria are mentioned in Textbox 1.

After screening the titles and abstracts, 81 articles were selected
for full-text review; 29 (36%) papers were excluded during this
stage as they did not align with the inclusion criteria, leaving
52 (64%) papers eligible for detailed synthesis and analysis.

The title and abstract screening was done by 1 reviewer, while
2 reviewers independently checked for paper eligibility against
the inclusion criteria at the full-text review stage. When both
reviewers were not in agreement on any papers, a third reviewer
assessed them to provide a final decision on the inclusion and
exclusion of the papers. Data charting was done using Microsoft
Excel, and the following variables were recorded in line with
related review papers [10,21]: title, year, journal, authors, digital
object identifier, data set, participant number, participant
demographic, signals used, data set size, sample rate, other data
(if applicable), outcome metric, device software, programming
language, preprocessing methods, algorithms, other techniques,
features, models, model type, results (quantified), and key
findings. Data synthesis was done using a narrative approach
by summarizing findings based on the similarities in the data
sets and techniques used. The detailed search queries,
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bibliography files of all databases, all included papers, metadata
of all papers and metadata of all papers included for full-text

review are provided in Multimedia Appendices 1-5 [22-73].

Textbox 1. Inclusion and exclusion criteria.

Inclusion criteria

• Article type: articles must be peer-reviewed publications in a journal, conference, or workshop

• Data: articles must conduct an analysis on premature human infant data; articles must use physiological responses in some form

• Outcome: articles discuss applications relating to adverse neonatal outcomes such as mortality, length of stay, sepsis, necrotizing enterocolitis,
intraventricular hemorrhage, hypoxic-ischemic encephalopathy, apnea, bradycardia, and other poor health outcomes, also known as morbidity.
The disease outcomes were chosen based on the commonly researched outcome metric using preterm infant data and the search terms used in
McAdams et al [10] that investigated artificial intelligence and machine learning techniques used to predict clinical outcomes in the neonatal
intensive care unit

• Analysis: articles reported some form of computational techniques in their analysis

• Language: English

Exclusion criteria

• Article type: review papers are excluded

• Data: nonhuman data (eg, piglet infant data would not be considered); videos and images that do not look at the physiological responses and
articles solely using demographic data for analysis were excluded

• Outcome: articles not focusing on these specified neonatal adverse outcomes were excluded

• Analysis: articles that only reported responses in their raw format were excluded

• Language: any languages other than English

Results

Overview of the Included Studies
Figure 1 shows the full process of database search and study
selection using a PRISMA flow diagram.

Of the 52 selected articles, 24 (46%) studies focused on
diagnostic models, while the rest (n=28, 54%) focused on
prognostic models. These included journal articles (n=34, 65%),
conference articles (n=17, 33%) and a workshop article (n=1,
2%). The most prominent physiological signals analyzed were
ECG (n=36, 69%), SpO2 (n=21, 40%), HR (n=16, 31%),
respiration (n=16, 31%), BP (n=6, 12%), EEG (n=4, 8%), and
temperature (n=3, 6%). While 8 (15%) studies used a
combination of programming languages; others used MATLAB
(n=6, 12%), Python (n=6, 12%), and R software (n=1, 2%),
while the remaining studies (n=31, 60%) did not report what
language was used. Physiological data monitoring and capturing
was done using a range of systems, which subsequently
impacted the sampling rate and quality of the data, thus leading
to heterogeneity of the studies. The most commonly used
devices for data capturing were Phillips Intellivue MP20, MP70,
MP450, and MX800 machines [74] (n=14, 27%). Some other
notable devices and software were BedMaster Ex System [75],
NicoletOne EEG system [76], ixTrend, Phillips Data Warehouse
connect [77], and Vuelogger patient monitoring system. The
most commonly analyzed outcomes of interest were sepsis
(n=20, 38%), apnea (n=17, 33%), bradycardia (n=13, 25%),
mortality (n=7, 13%), and hypoxic-ischemic encephalopathy
(n=5, 10%). It should be noted that 14 (27%) of the reviewed
studies analyzed a combination of adverse outcomes.

As the studies were found to be heterogeneous in their study
design and analysis techniques, a narrative approach was taken
to summarize the studies and their key findings. The studies
were grouped according to the homogeneity in terms of the data
sets used and sorted by the publication year. This approach was
inspired by the review article by Mann et al [78].

One of the noticeable patterns identified through the results
reported in Table 2 is that the groups publishing studies using
the same data set followed similar preprocessing techniques,
although not at every step. For instance, studies using the ECG
data from Cork University Maternity Hospital all used the same
algorithm for QRS complex detection. However, they were
diverse in their selection of filtering techniques and
segmentation duration. Furthermore, they systematically failed
to report detailed parameter settings for the QRS complex
detection. While the approach of using similar preprocessing
techniques helps maintain consistency to some extent, they do
not confirm adhering to clinical practices identified from domain
expert knowledge.

The QRS complex characteristics and RR intervals for neonates
are different from those of adults and as such require an
appropriate adjustment for QRS detection algorithms. This is
a necessary first step for HR variability (HRV) analysis in
neonates. However, a review published on neonatal HRV by
Latremouille et al [15] revealed that given a lack of clear
guidelines on neonatal vital signs and HRV analysis, several
studies followed HRV analysis guidelines for adults published
by the Task Force of the European Society of Cardiology and
the North American Society of Pacing and Electrophysiology
[79]. Our review found that 16 (44%) out of the 36 studies
analyzing ECG signals used the Pan-Tompkins algorithms for
QRS complex detection. The original implementation of the
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algorithm was based on the ECG characteristics of the adult
population and therefore was preprocessed accordingly. Only
4 (25%) of those 16 studies reported adjustment of the original
algorithm to adapt to neonates, of which only 2 provided specific
modification details. In the absence of detailed reporting on the
parameter settings, it is difficult to determine whether the
settings adhered to neonatal waveform morphology. Incomplete
reporting and lack of transparency hinder the understanding of
the strengths and weaknesses of a study and limit its
reproducibility and usability. Moreover, transparent and detailed
reporting is required to confirm the adherence to regulatory
compliance and is crucial for the clinical adoption of these
methods.

Similar to the QRS complex in ECG signals, the acceptable
ranges of physiological signals for neonates are also different
from those of the adult population. This review found that no
studies reviewed the acceptable ranges of the analyzed signals
against any published guidelines, which could pose several
limitations in the clinical adoption of the methods. This is
consistent with another review looking into physiological vital
sign ranges from 34 weeks gestational age, and it identified that
several studies reported the means of vital signs instead of
ranges, which makes the interpretation into clinical practice
difficult [80]. Here, we recommend clear reporting and the use
of physiological signal ranges that are clinically validated
through published studies and textbooks [81-83].

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram for the database search and study selection.
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Table 2. Summary of the articles reviewed in this study, grouped according to the homogeneity in terms of the data sets used and sorted by the publication
year.

Key findingsSignal processing and
computational tech-
niques

Physiological signal
analyzed

Study settingsAuthor, yearData set used

Eleven features were ex-
tracted from the signals. A

SpO2 values <65% and
changes in saturation

ECGc from single
channel at 100 Hz,

SpO2
d at 1 Hz

Participants: n=288;

data size: NRb; mod-
el: diagnostic; out-
come metric: sleep
apnea

Cohen and de Chazal
[22], 2013

National CHIMEa

database [84]
combination of features
from both signals resulted
in 88.8% accuracy, 94.3%
specificity, and 73.4%

exceeding 4% per sec-
ond were discarded.
ECG QRS complex was
detected using the Pan-

sensitivity in detecting
sleep apnea

Tompkins algorithm
[85] to generate RR in-
tervals. QRS complexes
were filtered using a
technique from Chazal
et al [86]. Filtered inter-
vals were time aligned
with SpO2 using 30-
second epochs

Fourteen features were ex-
tracted from the signals. A

Actigraphy signals arti-
fact rejection was done

ECG from single
channel at 100 Hz,

Participants; n=402;
data size: NR; model:

Cohen and de Chazal
[23], 2014

CHIME

linear discriminant classifi-using the technique de-SpO2 at 1 Hz, actigra-
phy signals at 50 Hz

diagnostic; outcome
metric: sleep apnea er achieved an accuracy of

74.1%, a sensitivity of
scribed by Lewicke et
al [87]. SpO2 values

82.0%, and a specificity of<65% and changes in
60.9% in detecting sleep
apnea

saturation exceeding
4% per second were
discarded. ECG data
were passed through a
QRS detection algo-
rithm (NR) to produce
RR intervals, which
were filtered using a
previously outlined
method [86]

Eleven features were ex-
tracted from both signals.

SpO2 and ECG signals
were time aligned to

ECG from single
channel at 100 Hz,
SpO2 at 1 Hz

Participants; n=394;
data size: NR; model:
diagnostic; outcome
metric: sleep apnea

Cohen and de Chazal
[24], 2015

CHIME

A linear discriminant
model achieved 66.7% ac-
curacy, 67% specificity,

30-second epochs.
SpO2 values <65% and
changes in saturation

and 58.1% sensitivity us-exceeding 4% per sec-
ing features from both sig-
nals

ond were discarded.
ECG QRS complex de-
tected using the Pan-
Tompkins algorithm
[85] to generate RR in-
tervals. QRS complexes
were filtered using a
technique from Chazal
et al [86]

Bradycardia severity esti-
mation accuracy was im-

RR intervals from ECG
were extracted using a

3-lead ECG at 500
Hz, respiration signal
at 50 Hz

Participants; n=10;
data size: ~20-70
hours each; model: di-
agnostic; outcome
metric: bradycardia

Gee et al [26], 2016PICSe database
[25,88]

proved by an average of
11% using a point process
model of heart rate and
respiration

modified Pan-Tomp-
kins algorithm (modifi-
cation details NR).
Analysis was done on a
3-minute window be-
fore each bradycardia.
No processing was re-
ported for respiration
signals
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Key findingsSignal processing and
computational tech-
niques

Physiological signal
analyzed

Study settingsAuthor, yearData set used

A point process mod-
el–based prediction algo-
rithm achieved a mean

AUROCf of 0.79 for >440
bradycardic events and
was able to predict brady-
cardic events on an aver-
age of 116 seconds before

onset (FPRg=0.15)

RR intervals from ECG
were extracted using a
modified Pan-Tomp-
kins algorithm (modifi-
cation details NR). The
artifacts, due to move-
ment, disconnection, or
erroneous peaks, were
removed by visual in-
spection. No processing
was reported for respira-
tion signals. Additional
analysis on the frequen-
cy content of the RR
time series was done
using Morlet wavelet
transform [89]

3-lead ECG at 500
Hz, respiration signal
at 50 Hz

Participants, 10; data
size: ~20-70 hours
each; model: prognos-
tic (+116 seconds);
outcome metric:
bradycardia

Gee et al [25], 2017PICS

Nonparametric modeling
using kernel density estima-
tion achieved a 5% false
alarm rate in predicting the
onset of bradycardia events

Baseline wander was
removed using a high-
pass filter with a cutoff
frequency between 0.5
and 0.6 Hz. Motion and
disconnection artifacts
were removed by visual
inspection. QRS com-
plexes were detected
using Pan-Tompkins
algorithm [85]. Signals
were segmented 5 min-
utes before and 2 min-
utes after a bradycardic
event

3-lead ECG at 500 HzParticipants; n=10;
data size: ~20-70
hours each; model:
prognostic (time NR);
outcome metric:
bradycardia

Das et al [27], 2019PICS

Time and frequency do-
main features were extract-
ed. An extreme gradient
boosting model achieved
an average AUROC of

0.867. HRVh results
showed a significant varia-
tion between a healthy in-
fant and an infant prone to
bradycardia

QRS complex was de-
tected using an algo-
rithm (NR). RR inter-
vals were calculated
from the detected peaks

3-lead ECG at 500 HzParticipants; n=11;
data size: ~20-70
hours each for 10 and
10 weeks for 1 partici-
pant; model: prognos-
tic (time NR); out-
come metric: bradycar-
dia

Mahmud et al [28],
2019

PICS
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Key findingsSignal processing and
computational tech-
niques

Physiological signal
analyzed

Study settingsAuthor, yearData set used

An autoencoder-prototype
model was proposed,
which achieves 93.1% (SD
0.4%) accuracy in predict-
ing bradycardia and 82.3%
(SD 3.8%) accuracy in
classifying apnea

Respiration signals
were clipped into 60-
second segments and
normalized to 0-mean,
unit variance. RR inter-
vals from ECG signals
were extracted using a
Morlet wavelet transfor-
mation. An open-source
peak finder (name NR)
was applied to the
wavelet scale ranging
from 0.01 to 0.04,
which is related to the
QRS complex forma-
tion in the spectrogram.
ECG signals were seg-
mented to 15 seconds
with the event in the
middle. The segments
were bandpassed fil-
tered from 3 to 45 Hz,
scaled to 0-mean unit
variance, and scaled to
the median QRS com-
plex amplitude. Wave-
forms were visually in-
spected to remove seg-
ments with no distin-
guishable QRS complex
or respiratory peaks

3-lead ECG at 500
Hz, respiration signal
at 50 Hz

Participant, n=10; data
size: ~20-70 hours
each; model: diagnos-
tic; outcome metric:
bradycardia, apnea of
prematurity

Gee et al [29], 2019PICS

Several statistical features
were extracted at 3-, 6-,
12-, and 24-hour window.
Linear model, naive Bayes,
decision tree, ensemble
method, and neural net-
work models were evaluat-
ed. The AUROC of the 48-
hour prediction model
achieved 0.861 and that of
the onset detection model
was 0.868

Data quality was as-
sessed by missing value
filter and 3-sigma rule.
The final observation
carried forward was ap-
plied to vital signs not
meeting data quality.
Zero imputation was
performed if calculation
could not be performed
(eg, divided by 0)

HRj, SBPk, DBPl,

MBPm, SpO2, respira-
tion, temperature, oth-
er (sampling rate NR)

Participants: 2819 (21
sepsis, 2798 control);
data size: NR; model:
prognostic (+48
hours); outcome met-
ric: sepsis

Song et al [30], 2020MIMIC-IIIi database
from Beth Israel Dea-
coness Medical Cen-
ter [90]

Several statistical features
were extracted from the

signals. CNN-LSTMn

model using a 3-day
scheme achieved AUROC
of 0.9336 (SD 0.0337)
across 5-fold cross-valida-
tion

Values <0 and flatline
cases were eliminated

HR, respiration signal,
sampled hourly

Participants; n=179
for 3-day and n=181
for 14-day model; da-
ta size, NR; model:
prognostic (+3 days);
outcome metric: mor-
tality

Baker et al [31], 2021MIMIC-III

A dynamic ensemble

KNNp method reached
0.988 (SD 0.001) F1-score
in mortality classification.
Voting of static ensemble
regression models

achieved an RMSEq of
12.509 (SD 0.079) in LOS
prediction

Missing data were filled
by forward and back-
ward filling, using the
mean value. For partici-
pants >24 measure-
ments, they were re-
duced by taking the av-
erage of the nearest
records. For <24 mea-
surements, values were
generated using filling
algorithm

HR, respiration signal,
SpO2, BP, tempera-
ture (sampling rate
NR)

Participants; n=3133;
data size: 24 hours
from each; model:
prognostic (time NR);
outcome metric: mor-

tality and LOSo

Juraev et al [32], 2022MIMIC-III
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Key findingsSignal processing and
computational tech-
niques

Physiological signal
analyzed

Study settingsAuthor, yearData set used

A Kalman-filter–based
method achieved sensitivi-
ty and specificity of
94.74% and 94.17%, re-
spectively, in predicting
apnea-bradycardia
episodes

Baseline and noise of
50 Hz were removed
from ECG signals, QRS
complexes were detect-
ed using Pan-Tompkins
algorithm [85]. RR inter-
vals were further down-
sampled to 10 Hz for 1
prediction model

One lead ECG at 400
Hz and respiration
signals (sampling rate
NR)

Participants; n=32;
data size: 105 seg-
ments of ECG with
250 seconds duration;
model: diagnostic;
outcome metric: ap-
nea- bradycardia

Ghahjaverestan et al
[33], 2015

University Hospitals
in France

14 features, computed in
10-second sliding excerpts,
were extracted from the
breathing signals. A logis-
tic regression classifier au-
tomatically rejects artifacts
to 86% sensitivity and
specificity, which is used
in the proposed framework
for neonatal sepsis detec-
tion

Frequency content >32
Hz from breathing sig-
nals was removed using
a seventh-order Butter-
worth low-pass filter.
After rejecting artifacts
due to gross move-
ments, a fourth-order
Butterworth filter with
a cutoff frequency be-
tween 0.5 and 20 Hz
was applied. Smoothing

filtering using an SGr

filter [91] was applied.
A simple extrema detec-
tor is then applied to
detect respiratory cycles

Respiration signals at
400 Hz, downsampled
to 64 Hz

Participants; n=51;
data size: testing co-
hort mean dura-
tion—2.4 hours; mod-
el: diagnostic; out-
come metric: sepsis

Navarro et al [34],
2015

University Hospitals
in France

A CHMMs achieved
95.74% sensitivity and
91.88% specificity in de-
tecting apnea-bradycardia
episodes, with a detection
delay of –0.59 seconds

Baseline and noise of
50 Hz were removed
from ECG signals using
a combination of low-
pass and notch filters;
QRS complexes were
detected using Pan-
Tompkins algorithm
[85]. Three features
were extracted using a
wavelet-based beat de-
lineator [92]. Features
were transformed to 10
Hz using interpolation
(technique NR)

ECG at 400 Hz. Syn-
thetic signals at 10 Hz

Participants; n=32;
data size: real (236
segments Synthetic)
200 sequences of 400
seconds; model: diag-
nostic (0.59-second
delay); outcome met-
ric: apnea-bradycardia

Ghahjaverestan et al
[35], 2016

University Hospitals
in France

Time, frequency, and non-
linear features were extract-
ed from the HRV parame-
ters. A logistic regression
model using visibility
graph features achieved
0.877 AUROC in predict-
ing sepsis 6 hours before
the start of antibiotics

RR intervals were de-
tected using modified
Pan-Tompkins algo-
rithms, and filter coeffi-
cients were adapted for
newborns [93]. A slid-
ing window of 30 min-
utes, with no overlaps,
was applied to extract
HRV parameters from
the RR time series. 30-
minute segments with a
maximum RR >1 sec-
ond or a minimum RR
of <0.19 seconds were
excluded,

ECG at 500 HzParticipant, n=49; data
size: NR; model:
prognostic (+6 hours);
outcome metric: sep-
sis

León et al [36], 2021University Hospitals
in France
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Key findingsSignal processing and
computational tech-
niques

Physiological signal
analyzed

Study settingsAuthor, yearData set used

Time, frequency, nonlin-
ear, and visibility graph
features were extracted
from the HRV parameters.

An RNNt model achieved
0.904 AUROC in predict-
ing sepsis 6 hours before
the time of infection and
>80% accuracy 24 hours
before the onset of infec-
tion

RR intervals were de-
tected using modified
Pan-Tompkins algo-
rithms and filter coeffi-
cients were adapted for
neonates [93]. RR time
series were extracted
and segmented into 5-
minute segments. The
5-minute periods corre-
sponding to 30 continu-
ous minutes were
grouped by calculating
the median of each cor-
responding HRV fea-
ture

ECG at 500 HzParticipants; n=259;
data size: NR; model:
prognostic (+6 hours);
outcome metric: sep-
sis

León et al [37], 2021University Hospitals
in France

A high rate of false alarms
(64%) was observed in real
life. The proposed optimal
decentralized fusion of 3
detection methods had a
significant detection delay
of 2.9 seconds, sensitivity
of 97.6% and false alarm
rate of 63.7%

QRS complexes were
detected using a multi-
feature probabilistic re-
al-time detector [93]

3-lead ECG at 300 HzParticipants; n=52;
data size: 8 hours of
recording from each;
model: diagnostic
(+2.9-second delay);
outcome metric:
bradycardia

Doyen et al [38], 2021University Hospitals
in France

A proposed layered

HMMu model achieved
97.14% (SD 0.31%) accu-
racy in detecting apnea-
bradycardia episodes, with
a detection delay of –5.04
(SD 0.41) seconds

The same preprocessing
techniques as reported
in Ghahjaverestan et al
[35]. QRS complexes
were identified using
Pan-Tompkins method
[85]. The RR time se-
ries were uniformly up-
sampled to 10 Hz using
a linear interpolation
technique

One lead ECG at 400
Hz

Participants; n=32;
data size: 233
episodes with a dura-
tion of 21.48 (SD
16.07) seconds; mod-
el: diagnostic (+5.05-
second delay); out-
come metric: apnea-
bradycardia

Sadoughi et al [39],
2021

University Hospitals
in France

Seven time and frequency
domain HRV features were
extracted. A Gaussian su-
pervector approach with

SVMw achieved 0.81 AU-

ROC in classifying HIEx

Artifacts were manually
removed. R-peaks from
raw ECG signals were
extracted using Pan-
Tompkins method [85].
The timing of the peaks
was adjusted and uni-
formly sampled to 256
Hz using Hermite
spline quadratic interpo-
lation. Then, HRV fea-
tures were extracted
from a 1-minute win-
dow with 30-second
overlap using the nor-
malized RR interval

2-lead ECG, EEGv

(sampling rate NR)

Participants: NR; data
size: 54 1-hour
recordings; model: di-
agnostic; outcome
metric: HIE

Ahmed et al [40],
2015

Cork University Ma-
ternity Hospital
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computational tech-
niques

Physiological signal
analyzed

Study settingsAuthor, yearData set used

An SVM classifier using a
subset of 9 EEG, 2 hours,
and 1 clinical feature
achieved 87% AUROC
and 84% accuracy in pre-
dicting HIE

The 1-hour EEG seg-
ments were downsam-
pled to 32 Hz with an
antialiasing filter set to
16 Hz. The filtered
EEG was segmented
into a 60-second epoch
with no overlap. QRS
complexes from ECG
signals were extracted
using the algorithm re-
ported in [94]. The re-
sulting peaks were
manually inspected to
correct ectopic beats or
mark artifacts. Then,
signals were segmented
into 60-second epochs

ECG and video EEG
at 256 Hz

Participant, n=38; data
size: 1 hour of EEG
and ECG recordings
from each; model: di-
agnostic; outcome
metric: HIE

Temko et al [41],
2015

Cork University Ma-
ternity Hospital

A logistic regression mod-
el predicted a 2-year poor
outcome with an AUROC
of 0.83

EEG recordings were
visually checked for
quality, and poor-quali-
ty data were discarded.
1-hour epochs of EEG
at 12 and 2 hours of age
were then extracted
from each recording. 1-
hour epochs of HR and
SpO2 were extracted at
12- and 24-hour time
point.

EEG at 256 Hz, SpO2

and HR at 1 Hz
Participant, n=43; data
size: mean recording
duration 41 hours 40
minutes; model: diag-
nostic; outcome met-
ric: future adverse
outcome in infants

Lloyd et al [42], 2016Cork University Ma-
ternity Hospital

Fifteen time, frequency,
and nonlinear features
were extracted from HRV.
An XGBoost decision tree
using all features achieved
an AUROC of 0.97 in pre-
dicting short-term out-
comes in infants

Diastolic and systolic
pressures every second
were used to calculate

MAPy. ECG signals
were segmented to
nonoverlapping 5-
minute epochs. QRS
complexes were extract-
ed by the Pan-Tomp-
kins method [85]. Ab-
normal RR intervals
were corrected by mov-
ing average. Periods of
clear movement of arti-
facts were automatical-
ly discarded (method
NR)

ECG at 256 or 1024
Hz, BP at 1 Hz

Participants; n=35
with 23 used; data
size: 824 hours; prog-
nostic (time NR); out-
come metric: short-
term adverse outcome

Semenova et al [43],
2018

Cork University Ma-
ternity Hospital
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Key findingsSignal processing and
computational tech-
niques

Physiological signal
analyzed

Study settingsAuthor, yearData set used

Time, frequency, and non-
linear features were extract-
ed from HRV. An XG-
Boost decision tree using
a single HRV feature
achieved 0.87 AUROC,
while multiple features
reached 0.97 AUROC in
predicting adverse out-
comes

DBP and SBP every
second were used to
calculate MAP. Seg-
ments with MAP<10
mm Hg were discarded
due to disconnection of
the pressure transducer
or movements. The
MAP was segmented
into 1-hour windows.
Values outside 3 SD
were discarded. ECG
signals were segmented
into nonoverlapping 5-
minute epochs. QRS
complexes were extract-
ed using the Pan-
Tompkins method [85].
ECG signal was band-
pass filtered with 4-30-
Hz cutoff frequency.
Abnormal values of RR
intervals were corrected
by the moving average
filter

ECG at 256 or 1024
Hz, BP at 1 Hz

Participants; n=43
with 23 used; data
size: total 831 hours;
prognostic (time NR);
outcome metric: 5 ad-
verse outcomes

Semenova et al [44],
2019

Cork University Ma-
ternity Hospital

Twenty-two features were
extracted from the signals.
A naive bayes classifier
reached up to 0.78 AU-
ROC and 3 hours leading
up to sepsis

Respiration waveforms
were bandpass filtered
between 0.45 and 1.45
Hz. QRS complexes
from ECG were extract-
ed using a DT-

CWTab–based method
described in [95].

IBIsac were detected
from the CI signal
peaks using an algo-
rithm (NR). Features
were extracted from ev-
ery 3-hour data

ECG at 250 Hz, CIaa

at 62.5 Hz

Participants; n=49;
data size: ~144 hours
each; model: prognos-
tic (+0-24 h); outcome
metric: sepsis

Joshi et al [45], 2020Máxima Medical

Center NICUz

An optimization of the al-
gorithm was proposed to
detect central apnea, which
achieved 90.5% recall,
19.7% precision, and
30.8% F1-score

A filtered respiration
signal without cardiac
artifacts was generated
using algorithms report-
ed in studies by Lee et
al [96], Mohr et al [97],
and Vergales et al [98].
Steps include Fourier
transformation and inte-
ger frequencies filtered
out, then resampled to
60 Hz and high-pass
filtered with a cutoff
frequency of 0.4 Hz,
and a low-pass filter
with a very low cutoff
frequency optimized to
fit apnea annotations by
clinical experts (value
NR)

ECG at 240 or 250
Hz, CI at 60 or 62.5
Hz, SpO2 at 0.5 or 1
Hz

Participants; n=20;
data size: ~570 hours;
model: prognostic (+6
hours); outcome met-
ric: central apnea pre-
ceding late-onset sep-
sis

Varisco et al [46],
2021

Máxima medical Cen-
ter NICU
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computational tech-
niques

Physiological signal
analyzed

Study settingsAuthor, yearData set used

Time domain features were
extracted from HRV.
Classification using a
combination of all features
and logistic regression
model reached a mean ac-
curacy of 0.79 (SD 0.12)
and mean precision of 0.82
(SD 0.18), 3 hours before
the onset of sepsis

QRS complexes from
ECG were extracted us-
ing a DT-CWT–based
method described the
same as Joshi et al [45].
CI signal was filtered to
remove cardiac arti-
facts, and peaks were
detected using methods
similar to those in previ-
ous works (NR). Fea-
tures were extracted
from every 1-hour sig-
nal

ECG at 250 Hz, CI at
62.5 Hz

Participants; n=64;
data size: NR; model:
prognostic (+3 hours);
outcome metric: sep-
sis

Cabrera-Quiros et al
[47], 2021

Máxima medical Cen-
ter NICU

47 features were extracted
from the vitals. A logistic
regression model achieved
0.9 AUROC in detecting
central apnea

QRS complexes were
detected using the same
method as reported in
Joshi et al [45] and
Cabrera-Quiros et al

[47]. From ECG, SIIad

was calculated by apply-
ing a bandpass filter
(0.001-0.40 Hz) using
10-second segments
and then computing a
kernel density estimate
to return patient motion
measurement every
second. RR intervals
were resampled at 250
Hz. CI signal was pro-
cessed using the
method by Redmond et
al [99] to calculate

RREae. No preprocess-
ing was done on SpO2.
Each feature was ex-
tracted using 30-second
windows. z score nor-
malization was applied
to the feature matrix

ECG at 250 Hz, CI at
62.5 Hz, SpO2 at 1 Hz

Participants; n=20;
data size: 960 hours of
data from 20 infants,
7818 event extracted;
model: diagnostic;
outcome metric: cen-
tral apnea

Varisco et al [48],
2022

Máxima Medical
Center NICU

A ResNet-based neural
network, DeepLOS, was
proposed, which achieved
a 0.72 F1-score in predict-
ing late-onset sepsis

QRS complexes from
ECG were extracted us-
ing a DT-CWT–based
method described by
Rooijakkers et al [95].
RR intervals from the
complexes were divided
into nonoverlapping 1-
hour segments. The
segments were cen-
tered, and missing val-
ues in the segments
were filled by zero
padding on the 2 ends

ECG at 250 HzParticipants; n=128;
data size: ~24 hours
each; model: prognos-
tic (+24 hours); out-
come metric: sepsis

Peng et al [49], 2022Máxima Medical
Center NICU
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computational tech-
niques

Physiological signal
analyzed

Study settingsAuthor, yearData set used

60 Features were extracted
from the signals. An XGB
model using the features
achieved an AUROC of
0.88 in predicting late-on-
set sepsis 6 hours preced-
ing the onset.

QRS complexes from
ECG were extracted us-
ing a DT-CWT–based
method described in
[95]. CI signal was fil-
tered to remove cardiac
artifacts (method NR).
Peaks were detected us-
ing the method reported
by Lee et al [96]. SII
was calculated from
ECG and CI waveforms
using a CWT-based
method, as reported by
Zuzarte et al [100]. Sig-
nals were divided into
1-hour-long nonoverlap-
ping segments. Features
were calculated in both
1-hour segments and 5-
minute subsegments

ECG at 250 Hz, CI at
62.5 Hz

Participants; n=127;
data size: ~48 hours
each; model: prognos-
tic (+6 hours); out-
come metric: sepsis

Peng et al [50], 2022Máxima Medical
Center NICU

An autoregressive HMM
model achieved up to 0.80
AUROC in predicting sep-
sis

An extension of the
forward-backward algo-
rithm [101] is devel-
oped for missing data
inference

ECG-derived HR,

PRaf (sampling rate
NR)

Participants; n=24;
data size: 30 hours
each; model: prognos-
tic (+3-6 hours); out-
come metric: sepsis

Stanculescu et al [51],
2014

Royal Infirmary of
Edinburgh NICU

An HSLDSag was able to
predict sepsis with up to
0.65 F1-score

An automated oximeter
error detection algo-
rithm was applied on
the basis of the method
described by Stancules-
cu et al [51]. Rows
containing missing data
on the observation ma-
trix are set to 0

ECG-derived HR, PR
core and peripheral
temperature and SpO2

at 1 Hz

Participants; n=24;
data size: 540 hours;
model: diagnostic;
outcome metric: sep-
sis

Stanculescu et al [52],
2014

Royal Infirmary of
Edinburgh NICU

An RFah model using HR
features achieved 0.88 ac-
curacy and 0.72 κ in detect-
ing apnea

Visualization technique
was applied to identify
issues in data. Missing
values were not treated
due to low percentage.
For categorical features,
0 was added for missing
values. Minimum-maxi-
mum normalization and
z score normalization
were done

HR (sampling rate
NR)

Participant: NR; data
size: 229 examples;
model: diagnostic;
outcome metric: ap-
nea

Shirwaikar et al [53],
2016

Kasturba hospital
NICU, Manipal, India

Statistical features were
extracted from the signals.
A Multilayer Perceptron
model and a deep autoen-
coder model reached 0.82
and 0.83 AUROC, respec-
tively, in detecting apnea

No preprocessing tech-
niques were reported on
the raw signals. Obser-
vations with missing
features were discarded.
Other features (continu-
ous values) that had
missing values were
converted to discrete
with the addition of the
group name “not
known”

ECG (sampling rate
NR)

Participants; n=367
(315 used); data size:
NR; model: diagnos-
tic; outcome metric:
apnea

Shirwaikar et al [54],
2019

Kasturba hospital
NICU, Manipal, India
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computational tech-
niques

Physiological signal
analyzed

Study settingsAuthor, yearData set used

Features were extracted

from all signals. A GMMai

model reached 0.8 AU-
ROC in predicting apnea

IBIs were extracted
from abdominal respira-
tory movements
(method NR), and RR
intervals were extracted
from ECG signals
(method NR). Physical-
ly implausible IBI and
RR interval values were
automatically removed
(range NR). Values
were resampled to 10
Hz using shape-preserv-
ing piecewise cubic in-
terpolation. Signals
were then log trans-
formed and converted
to 0 mean, unit variance

ECG, SpO2, respirator
signal, pulse plethys-
mogram (sampling
rate NR)

Participants; n=6; data
size: ~5-8 hours for
each patient; model:
prognostic (+5.5 min-
utes); outcome metric:
apnea

Williamson et al [55],
2013

University of Mas-
sachusetts Memorial
Healthcare NICU

The proposed framework
provided real-time analysis
and HRV extraction to
identify the characteristics
correlated to periods of
high distress or pain

Pan-Tompkins algo-
rithm [85] was modi-
fied to detect QRS
complexes. ECG was
filtered using a band-
pass filter with a 16-26-
Hz cutoff frequency. A
low-pass filter by an

order 120 FIRaj filter
with a corner frequency
of 25 Hz and a high-
pass filter by an order
160 FIR filter with a
corner frequency of 25
Hz were applied. Then,
a polynomial filter of
order 21 was applied as
the differentiator filter.
Finally, a 111-order
moving average filter
was used, and QRS
complex was detected
using an adaptive
threshold. Lomb-Scar-

gle LMSak spectral esti-
mation [102] was used
for missing and irregu-
lar RR intervals

ECG at 1000 HzParticipants; n=20;
data size: 1186 min-
utes; model: diagnos-
tic; outcome metric:
periods of high dis-
tress or pain

Schiavenato et al [56],
2013

Jackson Memorial
Hospital NICU

A linear Gaussian discrim-
inant classifier detected the
episodes with a 0.73 prob-
ability of detection and
0.22 probability of false
alarm

Signals were low-pass
filtered with a cutoff
frequency of 10 Hz,
with an 8-pole Bessel
antialiasing filter digi-
tized and sampled at 50
Hz

SpO2, RIPal (sampling
rate NR)

Participants; n=24;
data size: 9.0 (SD 2.2)
hours for each; model:
diagnostic; outcome
metric: apnea

Rubles-Rubio et al
[57], 2014

Montreal Children’s
Hospital

A point process model us-
ing RR intervals showed a
strong correlation with
bradycardia events and a
modest correlation with
hypoxemia events

HR data were converted
to interbeat RR inter-
vals using RR=60/HR.
No processing on ECG
signals was reported

ECG at 500 Hz and
HR at 1 Hz

Participants; n=18;
data size: 24 hours
each; model: prognos-
tic (+23 hours); out-
come metric: bradycar-
dia, hypoxemia

Amperayani et al [58],
2017

University of Alaba-
ma at Birmingham
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Physiological signal
analyzed

Study settingsAuthor, yearData set used

Features were extracted
from all signals. A gradient
boosting decision tree
achieved up to 0.97 AU-
ROC and 0.92 weighted
F1-score in patient-based
cross-validation in predict-
ing sepsis

Data were scaled down
to 1 record per minute.
Data blocks with in-
valid values were delet-
ed. Then, the sliding
window was set to 60
minutes to feed to the

MLam models

HR, SpO2, respiration
signal at 1 Hz

Participants; n<80;
data size: 407 patient-
day; model: prognos-
tic (+24 hours); out-
come metric: sepsis

Hu et al [59], 2018Monash Children’s
Hospital NICU, Aus-
tralia

A POPSar was developed
and fit a multivariate logis-
tic regression model,
which performed well in
predicting death, sIVH,
and BPD, but not tROP,
sepsis, and NEC

Infants with <6 hours of
data within 12 hours of
birth were discarded.
Cross-correlation of HR
and SpO2 was calculat-
ed over 10-minute win-
dows using the XCORR
function of MATLAB
with a lag time of –30
to +30 seconds

HR, SpO2 at 0.5 HzParticipants; n=78;
data size: NR; model:
prognostic (+12
hours); outcome met-

ric: death, sIVHan (se-

vere), BPDao, treated

ROP, ap late-onset

sepsis, and NECaq

Sullivan et al [60],
2018

University of Virginia
and Columbia Univer-
sity NICU

An unsupervised ensemble
of clustering techniques
was proposed to cluster in-
fants to different levels of
risk

Infants with missing
data on either end of the
total duration were ex-
trapolated to the win-
dow edge by repeating
the most proximal HRC
index values. Interior
missing values were
updated using linear in-
terpolation. A fifth-or-
der B-spline with
equally spaced knots
was used to capture in-
formation from indepen-
dent samples (HRC in-
dexes 12 samples apart)

HRCas index from
ECG

Participants; n=2989;
data size: 121 data
points per infant;
model: prognostic (+2
days); outcome met-
ric: mortality, sepsis

Zimmet et al [61],
2020

9 NICUs in the United
States

EEG delta power was
identified to be a crucial
biomarker for predicting
neonates with HIE who
died with those who sur-
vived

ECG contamination
from EEG was detected
using the method de-
scribed by Govindan et
al [104]. EEG signals
with amplitude>500 μV
or SD<0.01 μV were
discarded as artifacts.
The volume conduction
was attenuated by calcu-
lating the global aver-
age of EEG voltages
from all electrodes and
subtracting the global
average from the EEG
value of every electrode
in the frequency do-
main [62]. The values
were then transformed
to the time domain for
spectral analysis. EEG
was segmented into 10-
minute nonoverlapping
artifact and seizure-free
epochs. Spectral analy-
sis was done using a
Welch periodogram ap-
proach [105,106] using
3-second epochs

EEG at 200 or 256 HzParticipants; n=95;
data size: median
recording duration of
75.78 hours; model:
diagnostic; outcome
metric: HIE

Kota et al [103], 2020Children’s National
Hospital, Washington
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Physiological signal
analyzed

Study settingsAuthor, yearData set used

Features were extracted
from HRV. HeRO model
was tested using this data
set. HeRO score was able
to distinguish between
healthy and septic new-
borns

RR intervals were calcu-
lated from ECG using

HeROat model

ECG at 200 HzParticipants; n=5; data
size: ~24 hours each;
model: diagnostic,
outcome metric: sep-
sis

Mirnia et al [63], 2021Akbar Abadi Hospital
NICU, Iran

Thirty-four features were
extracted from the signals.
An RF model achieved
88% sensitivity and 0.93
AUROC in predicting
mortality

Missing or out-of-range
values were replaced
with NaN and then im-
puted using mean val-
ues for that variable
across all training and
testing data. Data were
downsampled to every
10 seconds to extract
features. Dynamic vari-
ables were calculated as
rolling means, SD, and
absolute z score on 5-
and 30-minute windows
to reduce the influence
of outliers

HR, respiration signal
and SpO2 at 1 Hz

Participants; n=275;
data size: 4, 01,33,460
data points; model:
prognostic (+6 hours);
outcome metric: mor-
tality

Lee et al [64], 2021St Louis Children’s
Hospital NICU

A logistic regression mod-
el using clinical and physi-
ological features achieved

an AUCau of 0.821 in pre-
dicting late-onset sepsis

HR and SpO2 values of
0 were removed. Eight
features were extracted
in 10-minute windows
and averaged hourly.
Cross-correlation be-
tween HR and SpO2

was calculated in 10-
minute windows of sig-
nals normalized to have
0 mean and SD of 1.
Cross-correlation was
done using the XCORR
function of MATLAB
with a lag time of –30
to +30 seconds

HR and SpO2 at 0.5
Hz

Participants; n=408,
(266 used); data size:
NR; model: diagnos-
tic; outcome metric:
sepsis

Sullivan et al [65],
2021

University of Virginia
Children’s Hospital,
Morgan Stanley Chil-
dren’s Hospital, and
St Louis Children’s
Hospital
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Key findingsSignal processing and
computational tech-
niques

Physiological signal
analyzed

Study settingsAuthor, yearData set used

A deep learning model us-
ing LSTM named
DeepPBSMonitor was de-
veloped to predict mortali-
ty with 0.888 accuracy,
0.78 recall, and 0.897
AUC

Infants with data >80
hours were truncated,
and <80 hours were
padded with 0s. Mean,
median, mode, and
Bayesian ridge data im-
putation techniques
were explored.
Bayesian ridge was
used to sample 5 data
sets by sampling differ-
ent posteriors each
time. Then, the average
was reported using 4-
fold cross-validation.
The rolling mean of
each vital sign with a
range of 5 minutes was
used to reduce noise.
Finally, the end of each
sample was padded
with 1 segment where
all features equaled 0.
Features were extracted
from 5-minute seg-
ments

HR, respiration,

SpO2, and ART-Mav

or NIBP-Maw at 1 Hz

Participants; n=285;
data size: ~80 hours
each; model: prognos-
tic (+6 hours); out-
come metric: mortali-
ty

Feng et al [66], 2021St Louis Children’s
Hospital NICU

The prediction framework
using GMM and logistic
regression model achieved
75% accuracy in predicting
bradycardia severity dur-
ing the apnea-bradycardia-
hypoxia event

PPG signals were fil-
tered using a wavelet-
based algorithm to re-
move gross body
movements. A binary
marker sampled at 25
Hz was obtained to indi-
cate the presence or ab-
sence of movement.
QRS complexes were
detected using a modi-
fied Pan-Tompkins algo-
rithm (modification
NR). IBIs were detected
using automated peak
detection from
LabChart Software RR
intervals, and IBI val-
ues were then interpolat-
ed at 10 Hz

ECG at 500 Hz,

PPGax at 125 Hz,
SpO2, HR, respiration
signals from pneumo-
gram at 50 Hz

Participants; n=10;
data size: 241.34
hours; model: prognos-
tic (+310 seconds);
outcome metric: ap-
nea-bradycardia-hy-
poxia

Zuzarte et al [67],
2021

University of Mas-
sachusetts Memorial
Healthcare

Features were extracted
from all signals. A multi-
variable logistic regression
model using 5 features
achieved the AUROC of
0.83 in predicting mortali-
ty

No preprocessing was
reported on the vitals.
They were grouped to
calculate the average in
10-minute nonoverlap-
ping windows

HR and SpO2 at 0.5
Hz

Participants; n=5957;
data size: random dai-
ly 10 minutes seg-
ments from each;
model: prognostic
(+1-7 days); outcome
metric: mortality

Niestroy et al [68],
2022

University of Virginia
NICU

Several features were ex-
tracted from the vitals. An
XGB model achieved
training AUROC of 0.834
using the data from NICU
1, and 0.792 and 0.807
testing AUROC using data
from NICU 2 and NICU 3,
respectively

HR and SpO2 were pre-
processed by removing
the values containing 0.
Features were calculat-
ed in 10-minute
nonoverlapping win-
dows. Windows with
>50% missing data
were excluded from
subsequent analysis

HR and SpO2 at 0.5
Hz

Participants; n=2494;
data size: NR; model:
prognostic (+24
hours); outcome met-
ric: sepsis

Kausch et al [69],
2023

University of Virginia
Children’s Hospital,
Morgan Stanley Chil-
dren’s Hospital and St
Louis Children’s Hos-
pital
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Key findingsSignal processing and
computational tech-
niques

Physiological signal
analyzed

Study settingsAuthor, yearData set used

A naive bayes classifier
achieved an AUROC of
0.82 up to 24 hours before
clinical suspicion of sepsis.
Adding respiratory signals
improved the performance
compared with only using
heart rate features

All signals were resam-
pled to 1 Hz. Segments
with at most 15 seconds
missing were linearly
interpolated. All signals
were filtered with a
moving mean filter of
width 3. IBI signals
were further filtered to
remove ectopic beats
and strong nonlineari-
ties with a moving me-
dian filter of width 3
and Butterworth band-
pass filter of order 6
with low-cut and high-
cut frequencies of
0.0021 and 0.43 Hz.
Signals were divided
into 45-minute seg-
ments. Features were
calculated using a slid-
ing time frame with
50% overlap

IBI from ECG, respira-
tion from CI, SpO2

(sampling rate 1-500
Hz)

Participants; n=325;
data size: 2866 hospi-
talization days; mod-
el: prognostic (+24
hours); outcome met-
ric: sepsis

Honoré et al [70],
2023

Karolinska University
Hospital Solna and
Huddinge NICU,
Stockholm, Sweden

A coupled HMM model
achieved 84.92% sensitivi-
ty, 94.17% specificity with
a time detection delay of
2.32 (SD 4.82) seconds in
detection apnea-bradycar-
dia episodes

No preprocessing tech-
niques were reported.
Signals were sampled
in 7-second intervals

2-channel ECGParticipants; n=32;
data size: 233
episodes, ~7 seconds
each; model: diagnos-
tic (+2.32-second de-
lay); outcome metric:
apnea-bradycardia

Masoudi et al [71],
2013

Simulated and real
data (NICU name NR)

The proposed model
achieved up to 93.84 (SD
0.79) in specificity and
89.66 (SD 0.71) in sensitiv-
ity with a detection delay
of 1.59 (SD 0.24) seconds

Hidden semi-Markov
models to represent the
temporal evolution of
RR intervals. A prepro-
cessing method that in-
cludes quantization and
a delayed version of the
observation vector is
proposed. RR time se-
ries was resampled at
10 Hz and segmented at
a 7-second interval

ECG (sampling rate
NR)

Participants; n=32;
data size: 148 RR in-
tervals with a mean
duration of 26.25 (SD
11.37) minutes; mod-
el: diagnostic (+1.73-
second delay); Out-
come metric: apnea-
bradycardia

Altuve et al [72], 2015Simulated and real
signals from NICU
(NICU name NR)
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Key findingsSignal processing and
computational tech-
niques

Physiological signal
analyzed

Study settingsAuthor, yearData set used

Features were extracted
from all signals. A com-
bined GMM-HMM model
achieved 0.74% (SD
0.05%) accuracy in detect-
ing sepsis. The model was
compared with HeRO
model, which underper-
formed using this data set

Data were segmented
into 20-minute time
frames. Time frames
with missing data were
discarded

SpO2, respiratory fre-
quency, and RR inter-
val from ECG at 1 Hz

Participants; n=22;
data size: 3501time
series, 1200 samples
in each; model: prog-
nostic (+72 hours);
outcome metric: sep-
sis

Honoré et al [73],
2020

NICU (name NR)

aCHIME: Collaborative Home Infant Monitoring Evaluation.
bNR: not reported.
cECG: electrocardiogram.
dSpO2: oxygen saturation.
ePICS: Preterm Infant Cardio-Respiratory Signals.
fAUROC: area under receiver operating characteristic curve.
gFPR: false positive rate.
hHRV: heart rate variability.
iMIMIC-III: Medical Information Mart for Intensive Care.
jHR: heart rate.
kSBP: systolic blood pressure.
lDBP: diastolic blood pressure.
mMBP: mean blood pressure.
nLSTM: convolutional neural network-Long Short-Term Memory Network.
oLOS: length of stay.
pKNN: k-nearest neighbor.
qRMSE: root mean square error.
rSG: Savitzky-Golay.
sCHMM: coupled Hidden Markov Model.
tRNN: recurrent neural network.
uHMM: Hidden Markov Model.
vEEG: electroencephalography.
wSVM: support vector machine.
xHIE: hypoxic-ischemic encephalopathy.
yMAP: mean arterial pressure.
zNICU: neonatal intensive care.
aaCI: chest impedance.
abDT-CWT: Discrete Time Continuous Wavelet Transform.
acIBI: interbreath variable.
adSII: Signal Instability Index.
aeRRE: ribcage respiratory effort.
afPR: pulse oximeter.
agHSLDS: Hierarchical Switching Linear Dynamical System.
ahRF: random forest.
aiGMM: Gaussian Mixture Model.
ajFIR: Finite impulse response.
akLMS: least-mean-square.
alRIP: respiratory inductive plethysmograph.
amML: machine learning.
anIVH: intraventricular hemorrhage.
aoBPD: bronchopulmonary dysplasia
apROP: retinopathy of prematurity.
aqNEC: necrotizing enterocolitis
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arPOPS: pulse oximetry predictive score.
asHRC: heart rate characteristics.
atHeRO: heart rate observation.
auAUC: area under the curve.
avART-M: arterial mean blood pressure.
awNIBP-M: noninvasive blood pressure.
axPPG: photoplethysmography.

Preprocessing Steps

Overview
Preprocessing of physiological data typically involves several
steps, including the handling of missing data, filtering,

segmentation, and waveform analysis for feature extraction.
Here, we define 5 required preprocessing steps (based on the
steps outlined in Berkaya et al [13]) and identify the steps
reported by each of the studies in this review (Table 3). The
definition of each of the steps is given in subsequent sections.
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Table 3. Required physiological signal preprocessing steps reported by each of the studies in this review.

Required preprocessing step reportedAuthor, year

Data segmentationWaveform feature ex-
traction

Resampling, normaliza-
tion

Artifact re-
moval

Handling of missing
data

✓✓✓✓Cohen and de Chazal [22], 2013

✓✓✓✓✓Cohen and de Chazal [23], 2014

✓✓✓✓Cohen and de Chazal [24], 2015

✓✓Gee et al [26], 2016

✓✓✓Gee et al [25], 2017

✓✓✓Das et al [27], 2019

Mahmud [28], 2019

✓✓✓✓Gee et al [29], 2019

N/Aa✓✓Song et al [30], 2020

✓N/A✓✓Baker et al [31], 2021

N/A✓✓Juraev et al [32], 2022

✓✓✓Montazeri Ghahjaverestan et al
[33], 2015

✓✓✓✓Navarro et al [34], 2015

✓✓✓✓Montazeri Ghahjaverestan et al
[35], 2016

✓✓León et al [36], 2021

✓✓León et al [37], 2021

✓✓Doyen et al [38], 2021

✓✓✓Sadoughi et al [39], 2021

✓✓✓✓✓Ahmed et al [40], 2015

✓✓✓✓Temko et al [41], 2015

✓N/A✓Lloyd et al [42], 2016

✓✓✓Semenova et al [43], 2018

✓✓✓✓Semenova et al [44], 2019

✓✓✓Joshi et al [45], 2020

✓✓✓Varisco et al [46], 2021

✓✓Cabrera-Quiros et al [47], 2021

✓✓✓✓Varisco et al [48], 2022

✓✓Peng et al [49], 2022

✓✓✓Peng et al [50], 2022

N/A✓✓Stanculescu et al [51], 2014

N/A✓✓Stanculescu et al [52], 2014

✓N/A✓✓✓Shirwaikar et al [53], 2016

✓N/A✓Shirwaikar et al [54], 2019

✓✓Williamson et al [55], 2013

✓✓✓Schiavenato et al [56], 2013

N/A✓✓Robles-Rubio et al [57], 2014

Amperayani et al [58], 2017

✓N/A✓✓✓Hu et al [59], 2018

✓N/A✓Sullivan et al [60], 2018
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Required preprocessing step reportedAuthor, year

Data segmentationWaveform feature ex-
traction

Resampling, normaliza-
tion

Artifact re-
moval

Handling of missing
data

✓N/A✓Zimmet et al [61], 2020

✓✓✓Kota et al [62], 2020

N/AMirnia et al [63], 2021

✓N/A✓✓✓Lee et al [64], 2021

✓N/A✓✓Sullivan et al [65], 2021

✓N/A✓✓✓Feng et al [66], 2021

✓✓✓✓Zuzarte et al [67], 2021

✓N/ANiestroy et al [68], 2022

✓N/A✓✓Kausch et al [69], 2023

✓N/A✓✓✓Honoré et al [70], 2023

✓Masoudi et al [71], 2013

✓✓✓Altuve et al [72], 2015

✓N/A✓Honoré et al [73], 2020

aN/A: Not applicable.

Handling of Missing Data
During neonatal physiological monitoring, instances of missing
data may arise due to sensor disconnection, improper
placements, or signal dropouts. To tackle this issue,
methodologies like data imputation or interpolation are applied.
For example, if gaps exist in a neonate’s HR monitoring data,
interpolation methods can estimate the missing values by
considering neighboring data points. Widely used interpolation
techniques include linear interpolation, spline interpolation, and
time-based interpolation. In addition, common data imputation
methods involve forward fill, backward fill, and imputation
using mean or median values. Methods such as forward fill [30],
moving average [44], mean imputation [64,66], and interpolation
[67] were used by some studies reviewed in this paper.

Artifact Removal
Neonatal signals can be affected by artifacts, such as those from
muscle movements or electrical interference. Commonly used
techniques, such as bandpass or notch filters, along with moving
averages, are used to effectively eliminate these disturbances.
For instance, in neonatal EEG signals, adaptive filters prove
beneficial in eliminating artifacts caused by muscle movements,
resulting in a clearer representation of the baby’s brain activity.
Some methods used by the reviewed papers were high-pass
filter [27,46] bandpass filter [29,33,44,45,56].

Resampling and Normalization

Overview

Resampling is a technique that standardizes data intervals,
involving either upsampling (increasing data point frequency)
or downsampling (decreasing frequency) to create a regular
time series. This aligns signals from different devices or
physiological sources. Normalization ensures uniformity and
reliability across these standardized sampling rates. For instance,
if neonatal HR signals from different devices have varied

sampling rates, resampling achieves a common rate, while
normalization, using techniques such as minimum-maximum,
z score, or log scale, ensures consistent amplitude scaling for
accurate comparative analysis. In the reviewed studies,
normalization techniques such as minimum-maximum [53] and
0 mean normalization [29,59] were used. In terms of resampling,
both downsampling [33,34,41] and upsampling [39] techniques
were used.

Waveform Feature Extraction

Extracting relevant features from a signal’s waveform is a
fundamental step in signal preprocessing. This involves
identifying key characteristics such as peaks, troughs, or other
significant points in the signal. In the context of neonatal ECG,
feature extraction may involve identifying key points such as
R-peaks to analyze HRV, providing valuable insights into the
infant’s autonomic nervous system development. The
Pan-Tompkins algorithm is a popular method chosen by multiple
papers reviewed in this study that conducted R-peak detection
from the QRS complex [22,24,27,33,35,39].

Data Segmentation

Segmenting data is the process of breaking down a continuous
signal into smaller, more manageable sections to enable targeted
analysis. This practice is especially beneficial when dealing
with lengthy signals. Data segmentation is a common
preprocessing step in ML workflows. For instance, in the
analysis of neonatal sleep patterns using EEG, data segmentation
can involve dividing the continuous EEG signal into epochs,
allowing for the identification and study of sleep stages in
shorter, more manageable segments. Commonly used
segmentation techniques include fixed length, sliding window,
and threshold- and feature-based segmentation. Some of the
data segmentation sizes used in the reviewed studies were
30-second [22-24,45] and 1-minute [41] epochs and a sliding
window of varied sizes [35,40,55,59,64].
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In neonatal physiological signal processing, these preprocessing
techniques contribute to the accurate interpretation of signals,
aiding health care professionals in monitoring and providing
appropriate care in the NICU or other clinical settings.

It can be seen from Table 3 that only 7 (13%) out of the 52
reviewed studies reported all the recommended preprocessing
steps. This could have several impacts on the downstream
analysis. For instance, several papers missed reporting on how
they segmented the data for feature extraction and classification,
although it is essential for clinical validation in cases where the
segment duration is dependent on the adverse outcome
prediction performance. In HRV analysis, it is important to
indicate whether it is a short-term (~5 minutes) or a long-term
(≥24 hours) analysis as they reflect different underlying
physiological processes and thus demonstrate different
predictive power [107]. Along with the segment duration,
additional information such as the sampling rate of the signals
will provide a clear reflection of the data set size. Downsampling
the data to a low sampling rate (eg, 50 Hz) has also shown a
significant impact on HRV analysis [108]. Although all the
reviewed studies mentioned the participant number, and majority
of them (n=39) reported the sampling rate of the signals, very
few provided details on the sample size or data set duration or
whether the data set was resampled for subsequent analysis.
These elements provide a clearer picture of the computational
time and resources required for clinical validation and adoption.
Although physiological recordings collected in the NICU
environment suffer greatly from missing data due to similar
factors that introduce artifacts [109], reporting how missing
data are handled is scarce. Different methods for dealing with
missing values could cause different results, and not all might
be suitable for a particular problem. Therefore, it is important
to report all the details related to the adopted approach.

The incomplete or partial reporting found in these studies has
significant implications for the implementation of QMS in using
these techniques for clinical adoption. A good implementation
of QMS requires a comprehensive reporting of each
intermediary step involved in constructing an AI and ML
pipeline. The International Medical Device Regulators Forum
offers guidance on the clinical evaluation required for any
product intended for use as a medical device [110]. According
to the International Medical Device Regulators Forum
guidelines, during clinical evaluation, relevant research articles
are reviewed to identify clinical evidence supporting the product
[111]. The guideline encourages manufacturers to follow these
recognized standards and best practices in the development,
validation, and manufacturing processes. Clinical evaluations
are required by the European Union medical device regulation,
and it is also mentioned in the ISO 13485 (the quality
management standard for medical devices). Thus, detailed
reporting is crucial as it can be used by regulatory bodies to
evaluate future SaMD products clinically. Steps such as the
missing data handling procedures are also required by the
TRIPOD (Transparent Reporting of a Multivariable Prediction
Model for Individual Prognosis or Diagnosis) checklist for
model development and validation, which assesses the risk of
bias and clinical usefulness of the prediction model [112].
Another example is a questionnaire prepared by the German

Notified Body Interest Group, and it was adopted to assess some
AI-powered medical products in the European Union. This
questionnaire includes inquiries about data management,
including data collection, labeling, preprocessing procedures,
and relevant documentation. Transparent and detailed reporting
of these steps is essential to ensure the safety, efficacy, and
reliability of SaMD.

Discussion

Principal Findings
This review aimed to summarize the computational methods
used for preprocessing preterm infants’ physiological data as a
first step in developing data-driven predictive models for adverse
outcomes related to clinical decision support. This is an
important step, especially from a clinician’s perspective, because
it increases the trustworthiness of the developed models by
allowing for the verification and reproduction of the results. In
addition, it aids in achieving regulatory compliance and ensures
the safety, efficacy, and ethical use of AI-based health care
devices. Furthermore, it allows us to recognize the shortcomings
in the current state-of-the-art studies and recommend guidelines
for transparent reporting. The review found that the studies were
heterogeneous in terms of their methods and applications.
Therefore, a narrative approach to reporting the results was
taken instead of a quantitative approach. Through the analysis
we identified several key components that were incomplete or
partially reported by the included studies, which are summarized
in Table 3. To ensure transparent reporting for any future studies
in this area, we recommend detailed reporting of all
preprocessing steps listed in Table 3, which will allow revealing
their strengths and weaknesses and ultimately make them usable
and reproducible. Reproducible research allows clinicians to
make more informed decisions about patient care and treatment
based on the evidence that has been thoroughly assessed.

Comparison With Prior Work
The reviews published in recent years have highlighted the
potential of big data and AI in supporting clinical
decision-making in the neonatal health care domain
[10,15,21,113,114], particularly in using physiological data for
detecting or predicting neonatal health outcomes. However,
appropriate preprocessing of these data is a prerequisite for
developing clinically deployable models. A systematic review
by McAdams et al [10] reported different ML models used to
predict different clinical outcomes in neonates. However, their
primary focus was on 5 neonatal morbidities, and they did not
focus on reporting the preprocessing methods applied before
building the ML models. Furthermore, they did not include
studies using real-time continuous physiological data; 28 out
of their 68 studies were based on physiological data (not
continuous), and the rest were based on electronic medical
records and imaging data. Latremouille et al [15] performed a
review on HRV analysis for neonates. The primary limitation
of the work was the lack of reporting in detail about the
preprocessing steps of ECG signals before HRV analysis, such
as ECG handling and segmentation, R-wave (QRS complex)
identification technique, software and parameters, and ranges
of all HRV features. They identified these components as
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incomplete or missing in the studies they reviewed and thus
recommended clear reporting of these aspects for future studies
in this area. These limitations served as a motivation for our
review to focus on the preprocessing techniques of neonatal
physiological signals in a broader sense, which serves as the
preliminary step for any big data–based approaches.

Limitations
There are several limitations to this review. Screening of all the
included studies was conducted independently by 1 reviewer,
which may have introduced bias. In addition, this review did
not include a quantitative or comparative analysis of the
reviewed studies, as the techniques used to analyze the
physiological signals were diverse. Future work could include
a quantitative evaluation of the studies that were homogeneous
in design.

Conclusions
This review explores the computational methods used by the
current state-of-the-art ML-driven clinical decision support
approaches to preprocess physiological signals collected from
infants treated in the neonatal setting. A summary of the studies
identified heterogeneity in the techniques used for analysis and
revealed a lack of consistent and detailed reporting, which is
important for building robust, transparent, and clinically
deployable prediction models. The availability of powerful
hardware and software resources in the NICU environment and
growing interest in big data and AI are driving strong demand
for clinical decision support applications. We recommend clear
reporting of the different steps in the preprocessing of the
neonatal physiological signals to ensure transparency in clinical
validation and accelerate the adoption of developed models in
the clinical setting. This will further enhance the delivery and
adoption of reliable, regulatory-compliant, safe, and effective
products in health care.
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