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Abstract

Background: The impact of missing data on individual continuous glucose monitoring (CGM) data is unknown but can influence
clinical decision-making for patients.

Objective: We aimed to investigate the consequences of data loss on glucose metrics in individual patient recordings from
continuous glucose monitors and assess its implications on clinical decision-making.

Methods: The CGM data were collected from patients with type 1 and 2 diabetes using the FreeStyle Libre sensor (Abbott
Diabetes Care). We selected 7-28 days of 24 hours of continuous data without any missing values from each individual patient.
To mimic real-world data loss, missing data ranging from 5% to 50% were introduced into the data set. From this modified data
set, clinical metrics including time below range (TBR), TBR level 2 (TBR2), and other common glucose metrics were calculated
in the data sets with and that without data loss. Recordings in which glucose metrics deviated relevantly due to data loss, as
determined by clinical experts, were defined as expert panel boundary error (εEPB). These errors were expressed as a percentage
of the total number of recordings. The errors for the recordings with glucose management indicator <53 mmol/mol were
investigated.

Results: A total of 84 patients contributed to 798 recordings over 28 days. With 5%-50% data loss for 7-28 days recordings,
the εEPB varied from 0 out of 798 (0.0%) to 147 out of 736 (20.0%) for TBR and 0 out of 612 (0.0%) to 22 out of 408 (5.4%)
recordings for TBR2. In the case of 14-day recordings, TBR and TBR2 episodes completely disappeared due to 30% data loss
in 2 out of 786 (0.3%) and 32 out of 522 (6.1%) of the cases, respectively. However, the initial values of the disappeared TBR
and TBR2 were relatively small (<0.1%). In the recordings with glucose management indicator <53 mmol/mol the εEPB was 9.6%
for 14 days with 30% data loss.

Conclusions: With a maximum of 30% data loss in 14-day CGM recordings, there is minimal impact of missing data on the
clinical interpretation of various glucose metrics.

Trial Registration: ClinicalTrials.gov NCT05584293; https://clinicaltrials.gov/study/NCT05584293

(Interact J Med Res 2024;13:e50849) doi: 10.2196/50849
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Introduction

Improved glucose sensing techniques have led to the increased
availability of continuous glucose monitoring (CGM) technology
for patients with diabetes. These minimally invasive sensors
measure the glucose concentration of the interstitial fluid every
1 or 5 minutes, representing the blood glucose concentration
with an average delay of 10-12 minutes [1,2]. CGM provides
insights into glucose concentration fluctuations throughout the
day and enables comparisons over time using predefined glucose
metrics. This offers better prevention of out-of-range values
compared to glycated hemoglobin (HbA1c) measurements or
traditional finger prick methods. Consequently, CGM has the
potential to improve glycemic control and adherence to lifestyle
and drug regimens [3-7]. Therefore, CGM devices have been
included in clinical guidelines and standards of care for patients
with type 1 and 2 diabetes [8].

Commonly used glucose metrics to assess glycemic control in
clinical practice from CGM devices include time in range (TIR),
representing the percentage of time spent within the glucose
range of 70-180 mg/dL (3.9-10.0 mmol/L), time below range
(TBR) in 2 levels, time above range (TAR) in 2 levels, glucose
management indicator (GMI), and the coefficient of variation
(CV). Although treatment targets are individualized, the general
aim is to achieve a TIR of over 70% while minimizing TBR
below 4% [9,10].

Incomplete data collection during CGM monitoring can affect
the clinical interpretation of glucose metrics. Several factors
such as loss of connectivity, sensor or reader malfunction,
depleted battery, or delayed interaction with the device when
data are only temporarily stored on the sensor, could lead to
data loss. This data loss can introduce bias in the estimation of
glucose metrics [11]. Evaluating the potential impact of data
loss on clinical interpretations and determining acceptable levels
of error is crucial for clinical decision-making [12].

The type and distribution characteristics of missing data are
important when evaluating data loss. There are 3 types of
missing data, they are, missing completely at random (MCAR),
missing at random (MAR), and missing not at random (MNAR)
[13-15]. MCAR implies no systematic differences between
participants with complete and incomplete data. MAR occurs
when missing values are independent of the missing variables,
but the pattern of missing data is dependent on time. In the case
of MNAR, valuable information is lost from the data and there
is no general method to manage the missing data properly
[16,17]. Consecutive missing data, or gaps, have a certain gap
size and incidence in the data, which can be represented by a
gap probability distribution. Missing data are characterized as
MCAR when the gap probability follows an exponential decline,
with minimal affecting analysis and outcomes. However, MAR
patterns skew the research outcomes, as missing data are more
prevalent at certain times than others. Therefore, insight into

the gap probability distribution is essential for understanding
the influence of missing data on desired outcomes [15,18-20].

Currently, the recommendation for reliable interpretation of
CGM data is to evaluate either 10 consecutive days without
data loss or 14 consecutive days with a maximum data loss of
30% [8,10,21]. However, these studies have not investigated
the impact of deviations from missing data in common CGM
metrics on clinical decisions for individual patients [12,22,23].
Furthermore, previous research has determined that at least
14-15 days of CGM data provide a good estimation of CGM
metrics compared to monitoring every 3 months or HbA1c

[21,24]. These studies primarily focused on the correlation
between CGM data and HbA1c, which does not give insight into
the impact of missing data on the clinical interpretation of
different CGM metrics. Additionally, it only reflects long-term
glycemic control, overlooking the potential for assessing
short-term variations afforded by CGM data. Therefore, this
study aims to investigate the effects of data loss on glucose
metrics in individual patient recordings and its influence on
clinical decision-making.

Methods

Patient Inclusion and Data Collection
This study was performed in the Diabase cohort, which is a
registry of adult patients with type 1 diabetes and those with
type 2 diabetes who use CGM technology as part of their care.
They are treated in Ziekenhuisgroep Twente (ZGT), a local
hospital in the Netherlands (NCT05584293). The exclusion
criteria were dependency on hemodialysis or inability to provide
informed consent.

All patients included in the Diabase cohort between September
2020 and March 2022 were reported upon, which contains
retrospective data from June 2016.

Ethical Considerations
The study was performed in accordance with the Declaration
of Helsinki, the guidelines of good clinical practice. The Medical
Research Ethics Committees United (MEC-U) in Nieuwegein,
the Netherlands (registration AW23.009/W20.197), reviewed
and approved the protocol. Prior to participation, patients
provided informed consent to collect their (retrospective)
glucose sensors and to retrieve relevant patient information
from electronic patient files (age, gender, HbA1c, and BMI).

For this study, deidentified data were provided by the Diabase
cohort, ensuring the confidentiality and privacy of participant
information. Participants did not receive financial compensation
for their participation in this study, as it solely involved the
collection of data readily available from standard practice.
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CGM Derived Clinical Metrics
We collected CGM data using FreeStyle Libre sensors, and the
data were stored in LibreView (Abbott Diabetes Care). The
sensors have a storage capacity of up to 8 hours of data and
measure for 2 weeks.

Derived from the CGM data were the mean glucose, TIR
(glucose between 70 and 180 mg/dL or 3.9 and 10.0 mmol/L;
%), TBR (glucose <70 mg/dL or 3.9 mmol/L; %), TBR level 2
(TBR2; glucose <54 mg/dL or 3.0 mmol/L; %), TAR (glucose
>180 mg/dL or 10.0 mmol/L; %), TAR level 2 (TAR2; glucose
>250.2 mg/dL or 13.9 mmol/L; %), SD glucose (mmol/L), CV
(%), GMI (mmol/mol), low blood glucose index (LBGI), high
blood glucose index (HBGI), and the risk index (RI; Multimedia
Appendix 1) [8,10,25-27].

Data Processing and Analysis
Data from LibreView were extracted as a CSV file and
processed in Python 3.9 (extension Spyder 5.3.1; Python
Software Foundation). Figure 1 illustrates the data processing
steps from the original CGM data into the various outputs used
in this study. Data from the FreeStyle Libre sensor were
recorded at intervals of 13-19 minutes (with an average every
15 minutes). First, duplicate data and data from multiple sources
within 14 minutes were removed from the data set.
Subsequently, data were resampled to 1 sample per 15 minutes
using linear interpolation, starting at midnight. Interpolated data
points were marked as missing when the time difference between
the 2 nearest original data points exceeded 19 minutes. These
steps resulted in the preprocessed data set.

Figure 1. Data processing pipeline showing the data processing steps, the different data sets and the outputs. AE95: 95th percentile of absolute error;
CGM: continuous glucose monitoring; εCT: error clinical target; εEPB: error expert panel boundaries.

From the preprocessed data set, the data loss characteristics
were determined (illustrated in Figure 1). The percentage of
missing data was calculated, and we determined the percentage
of time that patients adhered to the data loss guidelines outlined
in prior studies. These studies indicated that maintaining >70%
of CGM data over the last 14 days or 10 days out of the 14 days
strongly correlates with mean glucose, estimated HbA1c, TIR,

and hyperglycemic metrics over a 3-month period.
Consequently, our study adopts a 14-day measurement window
with <30% data loss or a 10-day window with no data loss
[8,21,24,28] The gap length and gap probability distribution
were computed (Figure 1). To assess whether the missing data
were MAR, we tested the fit of an exponential probability
function to the gap probability distribution for gaps smaller than
96 samples [13]. The data loss dispersion over time was
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researched by comparing the average data loss per patient of
the preprocessed CGM data set between various time
periods—hours within the day, days in the week, business days
(Monday to Friday) versus weekends, months, seasons, and
days of the year.

It is important to consider the circadian rhythm of glucose
metabolism during data analysis. Numerous studies have shown
diurnal variations in glucose tolerance, insulin secretion, and
peripheral insulin sensitivity, with poorer glycemic control
observed in the evening and at night in healthy individuals
[29,30]. To account for circadian rhythm, we constructed a
baseline data set for each patient by combining 28 segments of
24-hour data without missing data (Figure 1). In cases that were
where available, we merged multiple periods of 28 days per
patient for further analysis, excluding patients with less than 28
segments of data. From the 28-day recordings, we created
shorter recordings ranging from 7 up to 28 days.

Hereafter, data loss ranging from 5% to 50% was randomly
introduced into the baseline data set in accordance with the gap
distribution and data loss dispersion determined from the
preprocessed data set. This means the gap distribution of the
synthetic missing data is as close as possible to the gap
distribution found over the whole population in the preprocessed
data set. Also, synthetic data have higher chance of missing
following the found data loss dispersion over time. Therefore,
the synthetic missing data mimics the missing data as seen in
day-to-day patient care.

Absolute Errors
The CGM metrics were calculated for each recording in the
baseline and synthetic missing data set, and compared for every
recording. The absolute error (AE), the median AE (MedAE),
and the 95th percentile of the AE (AE95) as a result of missing
data were calculated for all CGM metrics (Figure 1).

Clinical Target Errors (εCT)

The clinical targets follow clinical guidelines—<4% TBR, <1%
TBR2, >70% TIR, <25% TAR, <5% TAR2, <36% CV, and
<53 mmol/mol GMI [9,10]. The percentage of recordings that
surpassed the clinical target cut-off because of missing data was
determined as the clinical target error (εCT). This step is
illustrated in Figure 1.

Expert Panel Boundary Error (εEPB)

A panel of experts consisting of a diabetes specialist nurse, a
diabetes nurse, and a technical physician (a medical specialist
in diabetes-related technology in health care) was interviewed.
Each expert was interviewed individually to discuss clinically
relevant changes in CGM metrics. During the interviews, CGM
metrics TIR, TAR, TAR2, TBR, TBR2, GMI, and CV were
discussed separately. The experts were instructed to consider a
generic patient with diabetes and to evaluate each CGM metric
separately. They were asked to identify when a change in the
CGM metric would likely result in therapy alteration, indicating
clinical relevance. A clinically relevant change can be dependent

on the initial value of the CGM metric. For example, a change
in TBR from 2% to 4% can have more impact than a change
from 8% to 10%, even though the absolute change is the same.
Therefore, the experts determined clinically relevant changes
for various initial values of all CGM metrics (Multimedia
Appendix 2). From these discussions, the strictest relevant
change per CGM metric was selected as the expert panel
boundary (Multimedia Appendix 2). The percentage of
recordings that exceed the defined expert panel boundary due
to data loss is defined as the expert panel boundary error (εEPB),
this step is depicted in Figure 1. When data loss resulted in an
εCT or εEPB of more than 5%, we assumed that data loss had
considerable influence on the CGM metric and should be
interpreted with caution, consistent with the clinically significant
criterion for a 5% increase in TIR [8].

GMI Subgroup Analysis
To see whether missing data had a different influence on TBR,
the recordings were divided into 3 GMI-based groups (<53,
53-64, and ≥64 mmol/mol), based on 3 commonly used HbA1c

categories as determined by the American Diabetes Association
[31]. Hereafter, the MedAE, εCT, and εEPB were calculated for
TBR in the 3 GMI groups.

Statistical Analysis
The median and IQR were calculated for the clinical and sensor
data characteristics, that is, the recording length, data loss, and
overall CGM metrics.

The fit between the gap distribution and the exponential
probability density function was tested with a 2-sided
Kolmogorov-Smirnov test and the sum of the squared error.
Differences in data loss dispersion between several time periods
were evaluated using the Kruskal-Wallis test with post hoc
Dunn test and Bonferroni correction. Differences between the
glucose metrics between the preprocessed data set and the
baseline data set with 28 days were evaluated using
Kruskal-Wallis test with Bonferroni correction. For these
statistical analyses, the packages SciPy and scikit-posthocs in
Python were used [32,33]. All data visualizations were made
with the Python package Matplotlib [34].

Scatterplots were generated for CGM metrics from 14-day
recordings with complete data versus those with 30% synthetic
missing data. Additionally, histograms of the AE were
constructed from 14-day recordings with 30% data loss in TBR
and TBR2. The histogram bin widths were determined with
Freedman-Diaconis rule. A P value <.01 was considered
significant.

Results

Data and Patient Characteristics
Between September 2020 and March 2022, 92 patients using a
FreeStyle Libre CGM device were included in the Diabase
study. Descriptive statistics of the population can be found in
Table 1.
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Table 1. Characteristics of the population and their data used in this research.

Values

79 (95.8)Type 1 diabetes, n (%)

13 (14.2)Type 2 diabetes, n (%)

47 (51)Men, n (%)

52 (37.3-60.5)Age (years), median (IQR)

26.2 (23.1-29.4)BMI (kg/m2), median (IQR)

7.6 (7.0-8.3)HbA1c
a (%), median (IQR)

60 (53.3-67.0)HbA1c (mmol/mol), median (IQR)

655 (499-925)Recording length (days), median (IQR)

13.5 (6.3-35.6)Data loss (%), median (IQR)

0.0 (0.0-0.3)Time recordings had 0% data loss for 10 days (%), median (IQR)

88.9 (63.0-98.7)Time recordings had <30% data loss for 14 days (%), median (IQR)

aHbA1c: glycated hemoglobin.

Data Loss Statistics
The gap probability distribution of the preprocessed data set
differs significantly from a fitted exponential probability density
function (P=.002). This means the data loss is not completely
random (Multimedia Appendix 3).

During the hours of 10-11 PM, 11 PM to midnight, and midnight
to 1 AM, a higher data loss of 35.8%, 43.3%, and 35.3%,
respectively, was observed compared to other hours of the day
with an average data loss of 10.4% (IQR 2.7%-30.5%; P<.001).
Therefore, to mimic the unequal dispersion we created synthetic
missing data following the probability of missing data during
the day. No significant differences in data loss were found
between other time periods.

Baseline Data Set
Among the 92 patients, 84 (91%) patients had sufficient data
to construct a data set of 28 segments with complete 24-hour
segments of data. These 84 patients contributed to a total of 798
recordings over 28 days, forming the baseline data set. Each
patient provided median of 7.0 (IQR 3.8-14.0) in 28-day
recordings. The median (IQR) for TIR, TBR, TBR2, TAR, and
TAR2 of all 28-day recordings were 60.3% (53.2%-67.8%),
3.3% (1.4%-5.8%), 0.3% (0.0%-1.0%), 35.4% (27.4%-43.3%),
and 9.4% (5.5%-13.9%), respectively. No significant differences
were found between all the clinical metrics of the preprocessed
data and the 28-day baseline data set, indicating that the selected
baseline data set reflects the original data.

Expert Panel
The experts unanimously agreed that the most important metrics
were TBR and TBR2, resulting in strict expert panel boundaries.
In the TBR range of 0%-4% and the TBR2 range of 0%-5%, a
difference of 1% was deemed clinically relevant (Multimedia
Appendix 2). However, as the TBR increased, the experts
allowed for higher changes, accepting a maximum of 5% for
TBR and 10% for TBR2 when the initial value was 100%.
Expert panel boundaries for the remaining glucose metrics can
be found in Multimedia Appendix 2.

CGM Metrics Without and Those With Synthetic Data
Loss
In the baseline data set, 734 (92.0%), 408 (51.1%), 796 (99.8%),
and 767 (96.1%) of the total (N=798) 7-day recordings contained
TBR, TBR2, TAR, and TAR2, respectively. For 28-day
recordings, this is 798 (100%), 611 (76.6%), 798 (100%), and
790 (99.0%) for TBR, TBR2, TAR, and TAR2, respectively.

The scatterplots of Figure 2A represent the relation between the
original 14-day data of TBR and TBR2, and with 30% data loss,
per individual recording. These figures show that 30% data loss
in these metrics results in small deviations from the true value
with data loss, as all data points are close to the identity line.
More recordings fell into the εEPB area for TBR, as the expert
panel boundary was stricter compared to TBR2. The histograms
of Figure 2B show the AE, MedAE, and AE95 for these CGM
metrics as a result of 30% data loss in a 14-day recording. The
MedAE in the histograms is small, indicating that the majority
of errors are small. However, the histograms also display a long
tail, indicating that there are instances where the AE is larger
than the MedAE.

Figure 3 shows the values of AE95, εCT, and εEPB for the CGM
metrics TBR and TBR2, with missing data increasing from 5%
to 50% over a period of 7 to 28 days. This analysis includes
only the recordings that had TBR episodes. As expected, the
AE95, εCT, and εEPB increase as the percentage of data loss
increases. When more days are available, the influence of data
loss is reduced (Figure 3A). Applying the current guidelines of
30% data loss for a 14-day recording period, we observed an
AE95 of 1.0% for TBR and 0.5% for TBR2. The corresponding
εCT values were 29 out of 786 (3.7%) recordings for TBR and
28 out of 522 (5.4%) recordings for TBR2 and the εEPB were
28 out of 786 recordings (5.0%) for TBR 1 out of 522 recordings
and 0.2% for TBR2. These findings suggest that the impact of
missing data on CGM metrics can vary significantly depending
on the specific metric and recording period used.
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Figure 2. (A) The density scatterplots of the TBR and (B) TBR2 indicates the relation between the 14-day-long original data without missing data
(horizontal axis) and the data with 30% data loss (vertical axis). More detail of the critical areas of TBR and TBR2 are illustrated in (C) and (D). The
color bar indicates the Gaussian kernel-density estimate of the recordings. The black dashed lines represent the expert panel boundaries, and the horizontal
and vertical black dotted lines represent the clinical targets. Values falling outside the clinical target and expert panel boundary, in the hatched areas,
are labeled as errors (εCT and εEPB). (E) The histograms show the AE (%) with the median AE (MedAE) and AE95 as a result of 30% data loss of the
TBR and (F) TBR2. AE: absolute error; AE95: 95th percentile of AE; CT: clinical target; EPB: expert panel boundary; MedAE: median absolure error;
TBR: time below range; TBR2: time below range level 2; εCT: clinical target errors; εEPB: expert panel boundary errors.
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Figure 3. (A) The εEPB of 5%-50% data loss in recordings (horizontal axis) of 7-28 days (vertical axis) of TBR. The white line indicates the boundary
where the εEPB exceeds 5%. (B,C) show the AE95, (D,E) the clinical target errors (εCT), and (F,G) the εEPB of TBR and TBR2 respectively of 10%,
20%, 30%, 40%, and 50% data loss in recordings of 7, 14, 21, and 28 days. The color bar indicates the errors in percentages. AE95: 95th percentile of
the absolute error; TBR: time below range; TBR2: time below range level 2; εEPB: expert panel boundary errors; εCT: clinical target errors.

For a 14-day measurement period with 30% data loss, the AE95

was 2.4%, 1.3%, and 1.0%, εCT was 17 (2.1%), 23 (2.9%), and
14 (1.8%) and εEPB was 0 (0.0%), 0 (0.0%), and 0 (0.0%) for
TIR, CV, and GMI, respectively (Figures S1 and S2 in
Multimedia Appendix 4). For TAR and TAR2 the εEPB was
0.0% for all cases (Figure S3 in Multimedia Appendix 4).

TBR and TBR2 have the highest errors, especially with greater
data loss in shorter recordings, with a maximum εEPB of 147
out of 736 (20.0%) of the recordings for TBR and 22 out of 408
(5.4%) of the recordings for TBR2, compared to a maximum
of 5 out of 798 (0.6%) for TIR, CV, and GMI. In 2 (0.3%) of
the 14-day recordings, the TBR value went from 0.2% to 0.0%,
resulting in its disappearance due to data loss. Similarly, the
TBR2 metric disappeared in 32 (6.1%) recordings in the 14-day
recordings with 30% data loss. The median TBR2 value of the
original recordings was 0.07% (IQR 0.07%-0.15%). No other
metrics disappeared due to data loss.

For the SD, LBGI, HBGI, and RI, only the AE95 was available.
The overall AE95 was low, with 0.1 for SD, 0.2 for LBGI, and
0.6 for HBGI and RI. The highest AE95 of 0.8% was observed
for the HBGI and RI metrics in a 7-day recording with 50%
data loss (Figure S4 in Multimedia Appendix 4).

GMI Subgroup Analysis
The recordings were divided into 260 (32.6%) low GMI (<54
mmol/mol), 445 (55.8%) moderately elevated (53-64
mmol/mol), and 93 (11.7%) elevated GMI recordings (≥64
mmol/mol). Figure 4 shows the values of AE95, εCT, and εEPB

for TBR, with missing data increasing from 5% to 50% over a
period of 7 to 28 days for the GMI subgroups. The error caused
by missing data is highest in the low GMI group (Figures 4A,
4D, and 4G). The AE95, εCT, and εEPB are 1.2%, 10 (3.8%), and
25 out of recordings 260 (9.6%), respectively, for a recording
of 14 days with 30% data loss. This means that for 9.6% of the
recordings a clinical expert would see a relevant change.
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Figure 4. (A-C) The AE95 are shown, (D-F) the εCT, and (G-I) the εEPB of TBR within 3 GMI groups of <53 mmol/mol, 53 mmol/mol≤ GMI <64
mmol/mol, and GMI ≥64 mmol/mol. These panels illustrate the impact of 10%, 20%, 30%, 40%, and 50% data loss in recordings of 7, 14, 21, and 28
days. The color bar indicates the errors in percentages. AE95: 95th percentile of the absolute error; GMI: glucose management indicator; TBR: time
below range; εCT: clinical target errors; εEPB: expert panel boundary errors.

Discussion

Principal Findings
This study provides a thorough analysis of missing data’s impact
on real-world CGM recordings for patients with diabetes. By
merging data analysis and expert evaluations, it assesses the
clinical implications of missing data on CGM metrics, improving
our understanding of its practical effects and challenges.
Findings indicate that a minimum of 14 days of glucose data
collection with no more than 30% missing data suffice for
clinical decision-making, ensuring adequate patient care.

The key finding of this study is that the interpretation of TBR
metrics is more vulnerable to greater clinical consequences due
to missing data compared to other metrics. The results indicate
that up to 30% data loss in a 14-day recording results in a
misinterpretation of the glucose metric in 5.0% of the time.
Therefore, it should be realized that 30% data loss over a 14-day
measurement will occasionally lead to false clinical

interpretations of TBR. Furthermore, when analyzing the data
by GMI levels, it is notable that in 9.6% of recordings featuring
low GMI levels, a clinical expert would observe a relevant
change due to missing data on TBR. These findings underscore
the substantial impact of missing data on TBR, emphasizing
the importance of cautious interpretation in clinical practice.

Similarly, for TBR2, 14-day recordings with 30% data loss
resulted in misinterpretation in 0.2% of cases, and the complete
disappearance of TBR2 episodes occurred in 6.1% of the cases.
One might, therefore, suggest that severe hypoglycemic episodes
would be missed, which can have potentially serious clinical
consequences as symptoms might not always be recognized
when they occur during nighttime [35]. However, this complete
loss of TBR2 episodes occurs only when the actual TBR2 value
is below the clinical target of 1%, and thus, would not have
required any action. In contrast, missing data had limited
influence on the clinical interpretation of other glucose metrics
such as TIR, CV, GMI, TAR and TAR2. This limited influence
was partly caused by broader expert panel boundaries for these
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metrics compared to TBR and TBR2. The expert panel accepted
errors of 1%-5% for TBR2 and 1%-10% for TBR, while the
accepted errors for TIR, TAR, and TAR2 ranged between 5%
and 10%. When TBR is not a primary concern, 14 days of CGM
data can be interpreted with 50% missing data. Even
measurements shorter than 14 days could be used, but the
representativeness of the data for long-term glucose values will
diminish, and the correlation of the metrics with HbA1c may
decrease [21].

Based on the findings of this study, we propose several
recommendations. First, we support the current recommendation
of having a minimum of 70% data available in a CGM recording
of 14 days. However, health care practitioners should be aware
that there is still a chance of misinterpreting TBR. The guideline
of a 10-day CGM recording with no data loss might be
impractical, as the real-life CGM data analyzed in this study
rarely met this criterion [8]. Therefore, our second
recommendation is to use a measurement period of at least 14
days, which aligns with the durability of the current sensors.
However, this result should be validated by other studies with
different glucose sensors.

In this study, the expert panel boundaries are an important
feature that may contribute to current clinical guidelines as they
give insight into when CGM metrics result in clinically relevant
changes due to data loss. The current clinical targets for most
CGM metrics are valuable in the clinical setting to serve as
goals for optimal glucose management. However, the targets
are a limited tool for determining when a patient has a clinically
relevant improvement or deterioration of their glucose
management. When assessing the clinical consequences, the
clinical target may not always be useful because significant
changes due to data loss may not result in a different
categorization if the initial value is already far from the target.
However, such changes may still be clinically relevant.

In the literature, the CGM metrics SD, LBGI, HBGI, and RI
are defined [21]. However, there are currently no targets defined
for these metrics. Consequently, the expert panel was unable
to determine such a boundary for these metrics. Nevertheless,
AE95 can provide insight into the error size, but not indicate the
impact on clinical decision-making. Previous studies
investigating the influence of missing data on glycemic
variability metrics reported small MedAEs [12,22]. This
corresponds to our findings of small MedAEs, suggesting that
even with excessive data loss, the CGM metrics would not be
altered significantly. However, the AE95 is in some cases
relatively high, indicating that in 5% of the population data loss
can have quite significant clinical consequences. Therefore, we
reported on AE95 instead of MedAE in this study.

The data loss in the real-world CGM data was MNAR, as the
gap probability distribution did not follow an exponential
function. Next to that, the chance of missing data during the
night (10 PM-1 AM) was higher. MNAR data loss has a
profound impact on the effects of missing data and synthetic
data loss cannot be applied arbitrarily. Therefore, in this
research, we mimicked these characteristics of data loss to create

a simulation that closely resembled the actual missing data
experienced by patients using CGM devices in everyday life.

Limitations
Several potential limitations of this study need to be addressed.
In clinical practice, all CGM metrics are typically evaluated
together rather than individually which was done to determine
the clinical expert boundaries. Additionally, these metrics will
be reviewed at every clinical visit, further reducing the actual
risk that missing data will cause a change in treatment. Another
potential limitation of our study is the small number of experts
involved in defining the boundaries for CGM metrics. The
subjectivity and potential biases inherent in expert input can
pose challenges. Furthermore, the cut-off to accept an εEPB at
5% was chosen arbitrarily and choosing a different cut-off could
influence the interpretation of the results. It is important to note
that defining different boundaries than those presented in this
study could influence the observed errors.

It should also be considered that this research has been
performed on data measured only with the FreeStyle Libre 1
sensor, and some findings might differ for other devices. For
example, the 8-hour data storage capacity may explain why
more data are lost during the early night (10 PM-1 AM), which
is a critical time for glucose measurements [36]. However, the
presented research methodology can be easily adopted and
applied to other CGM devices or populations. The results
presented in our study were obtained from patients with diabetes,
predominantly type 1 diabetes, who were treated in a hospital
in the Netherlands. Differences in patient demographics, disease
progression, and device accuracy could impact the applicability
of findings across diverse populations. Therefore, caution should
be exercised when extrapolating these results to other
populations. However, the average HbA1c value of 7.6% (IQR
7.0%-8.3%; 60.0 mmol/mol, IQR 53.3-67.0 mmol/mol) was
comparable with a large cohort from Germany and Austria, with
a mean HbA1c of 7.8% (IQR 6.9%-8.9%; 62, IQR 52.0-74.0
mmol/mol), suggesting some level of generalizability [37].
Furthermore, the presented methodology can be applied to
investigate the consequences of missing data in other diabetes
populations using CGM.

Methodological Decisions
Some noteworthy methodological decisions were made in this
study. First, we decided to include all the available 24-hour
windows, thus including multiple 28-day recordings per patient
in the data set. With this approach, there were no significant
differences in CGM metrics between the preprocessed data with
the baseline data set, validating the inclusion of multiple
recordings. Second, not all patients used their CGM device
continuously. Patients may have periods of several months
where they did not use a CGM device. We marked this as
missing data, which may have led to a potential overestimation
of the reported data loss, compared to day-to-day CGM use.
Third, we decided to create recordings of 7 to 28 days to study
a range of CGM measurement lengths. The studies of
Riddlesworth et al [21] and Xing et al [24] suggest that at least
14-15 days of CGM data provide a good estimation of CGM
metrics compared to monitoring every 3 months or HbA1c. Also,

Interact J Med Res 2024 | vol. 13 | e50849 | p. 9https://www.i-jmr.org/2024/1/e50849
(page number not for citation purposes)

den Braber et alINTERACTIVE JOURNAL OF MEDICAL RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Akturk et al [23] state that while the optimal recording length
depends on the size of the gaps, duration of 14 days generally
proves to be adequate. Using measurements of 7-28 days, we
can ensure that an adequate measurement duration was covered.

Future Research
Future research should focus on including a heterogeneous
population of patients with type 1, type 2, and other subtypes
of diabetes. Next to that, more commonly used sensors should
be added to the analysis to give a more generalizable result.
Finally, the expert panel should be expanded and implemented
similarly to the Parkes and Clarke error grids, involving a larger
and more diverse panel of experts, to enhance the reliability and
generalizability of the established boundaries [38,39].

Conclusions
To conclude, our aim was to examine the impact of data loss
on glucose metrics within individual patient recordings from
continuous glucose monitors and its implications for clinical
decision-making. Through integrated data analysis and expert
evaluations, we underscore the importance of comprehending
missing data’s clinical consequences and recommend a
maximum of 30% missing data in 14-day CGM recordings to
enhance accurate interpretation and glucose management,
acknowledging the possibility of misinterpreting TBR even
with this threshold. For reliable interpretation of TBR in
recordings with a low GMI, data loss should be below10%.
Further research is needed to explore the consequences of
missing data in diverse populations using various CGM devices,
emphasizing the importance of comprehensive data collection
for optimal glucose management and clinical decision-making.
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εEPB: expert panel boundary error
AE: absolute error
AE95: 95th percentile of the absolute error
CGM: continuous glucose monitoring
CV: coefficient of variation
GMI: glucose management indicator
HbA1c: glycated hemoglobin
HBGI: high blood glucose index
LBGI: low blood glucose index
MAR: missing at random
MCAR: missing completely at random
MEC-U: Medical Research Ethics Committees United
MedAE: median absolute error
MNAR: missing not at random
RI: risk index
TAR: time above range
TAR2: time above range level 2
TBR: time below range
TBR2: time below range level 2
TIR: time in range
ZGT: Ziekenhuisgroep Twente
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