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Abstract

Background: Diet-related diseases, such as type 2 diabetes, require strict dietary management to slow down disease progression
and call for innovative management strategies. Conventional diet monitoring places a significant memory burden on patients,
who may not accurately remember details of their meals and thus frequently falls short in preventing disease progression. Recent
advances in sensor and computational technologies have sparked interest in developing eating detection platforms.

Objective: This review investigates central hemodynamic and thermoregulatory responses as potential biomarkers for eating
detection.

Methods: We searched peer-reviewed literature indexed in PubMed, Web of Science, and Scopus on June 20, 2022, with no
date limits. We also conducted manual searches in the same databases until April 21, 2024. We included English-language papers
demonstrating the impact of eating on central hemodynamics and thermoregulation in healthy individuals. To evaluate the overall
study quality and assess the risk of bias, we designed a customized tool inspired by the Cochrane assessment framework. This
tool has 4 categories: high, medium, low, and very low. A total of 2 independent reviewers conducted title and abstract screening,
full-text review, and study quality and risk of bias analysis. In instances of disagreement between the 2 reviewers, a third reviewer
served as an adjudicator.

Results: Our search retrieved 11,450 studies, and 25 met our inclusion criteria. Among the 25 included studies, 32% (8/25)
were classified as high quality, 52% (13/25) as medium quality, and 16% (4/25) as low quality. Furthermore, we found no evidence
of publication bias in any of the included studies. A consistent postprandial increase in heart rate, cardiac output, and stroke
volume was observed in at least 95% (heart rate: 19/19, cardiac output: 18/19, stroke volume: 11/11) of the studies that investigated
these variables’ responses to eating. Specifically, cardiac output increased by 9%-100%, stroke volume by 18%-41%, and heart
rate by 6%-21% across these studies. These changes were statistically significant (P<.05). In contrast, the 8 studies that investigated
postprandial thermoregulatory effects displayed grossly inconsistent results, showing wide variations in response with no clear
patterns of change, indicating a high degree of variability among these studies.

Conclusions: Our findings demonstrate that central hemodynamic responses, particularly heart rate, hold promise for
wearable-based eating detection, as cardiac output and stroke volume cannot be measured by any currently available noninvasive
medical or consumer-grade wearables.

Trial Registration: PROSPERO CRD42022360600; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=360600

(Interact J Med Res 2024;13:e52167) doi: 10.2196/52167
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Introduction

The rising incidence of diet-related diseases, such as coronary
heart disease [1], and type 2 diabetes [2] has led to the
emergence of an innovative research field called automated diet
monitoring [3,4]. The primary objective of this field is to
advance technologies that facilitate comprehensive monitoring
of critical elements of food intake, such as meal timing, duration,
quantity, and nutritional composition [5]. A fundamental aspect
of this field is eating detection [4], which involves using
technologies such as wearable devices to determine when an
individual is eating. This innovative approach holds immense
potential in empowering individuals to more accurately and
efficiently monitor their dietary habits and effectively manage
chronic diseases that require precise dietary control. By
leveraging wearable technologies, eating detection enables
real-time monitoring of meal timing, duration, and eating
patterns, thus providing valuable insights into eating behaviors
and supporting overall health and well-being.

Despite extensive research in eating detection [6-10], successful
deployment of eating detection platforms remains elusive.
Several challenges have hindered their widespread adoption,
including the use of custom-made wearables with impractical
form factors [4,11] or privacy concerns [12]. Notable examples
include dental implants [11], on-body cameras [12], and
wrist-worn inertial sensors [13,14] (accelerometer, gyroscope,
or magnetometer), which pose significant challenges for
widespread acceptance. In addition, many studies have relied
on data collected in controlled laboratory or semicontrolled
field settings [6,15,16], leading to algorithms that struggle to
perform effectively in real-life scenarios filled with diverse
activities and situations.

Furthermore, while some studies have achieved accurate
detection of eating episodes [17-19], few have demonstrated
the feasibility of real-time implementation [6], raising questions
about their suitability for use in free-living scenarios. Real-time
computation requires high-performance computing platforms
with long battery life, presenting significant challenges for many
proposed solutions [6]. In addition, detecting eating episodes
during concurrent activities, such as walking, remains a
substantial hurdle that necessitates further algorithmic
improvements [7].

By the same token, most of the existing systems rely on a single
sensor with limited provisions for sensor failure or suboptimal
performance. In contrast, multimodal sensing, which involves
using different sensors on one or more devices, can provide
complementary and unique information, enhancing the
performance and reliability of eating detection platforms,
especially when combined with higher sampling rates [4,20].

Given the aforementioned challenges, extensive research
focusing on exploring untapped sensing signals and repurposing

everyday wearable devices for eating detection remains crucial.
In line with this objective, our review investigates the potential
of central hemodynamic and thermoregulatory responses to
food intake as promising biomarkers for eating detection.
Through a comprehensive analysis of the existing literature,
this review aims to shed light on the role of central
hemodynamics and thermoregulation in monitoring eating
behavior, contributing valuable insights toward the development
of effective and practical eating detection platforms.

Methods

Overview
This review adheres to the PRISMA (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses) [21] guidelines.
It is registered on PROSPERO (CRD42022360600).

Information Sources
We searched peer-reviewed literature indexed in PubMed, Web
of Science, and Scopus on June 20, 2022, with no date limits.
We also conducted manual searches in the same databases until
April 21, 2024. Before the official search, we identified a key
study [22] and decided to augment our search by retrieving
officially provided similar studies from PubMed and Web of
Science.

Search Strategy
This review examines central hemodynamic and
thermoregulatory responses to food intake as potential
biomarkers for wearable-based eating detection. To capture
relevant studies, our search used keywords such as
“hemodynamic,” “haemodynamic*,” “thermoregulat*,”
“temperature regulation,” “body heat,” “body temperature,”
“skin temperature,” “eating,” “meal*,” “ingest*,” “intak*,”
“postprandial,” and “post-prandial.” We excluded all animal
studies from our search. While our search strategy did not
impose language restrictions on retrieved papers, we excluded
10 non–English-language papers published in Czech, French,
German, and Japanese. For a comprehensive overview of our
search strategy across all databases, please refer to Multimedia
Appendix 1.

Eligibility Criteria
All included studies were peer-reviewed journal and conference
papers published before April 21, 2024. Eligible studies had to
demonstrate the impact of eating on central hemodynamics and
thermoregulation, assessing metrics such as changes in heart
rate, blood pressure, cardiac output, core or skin temperature,
or stroke volume in healthy individuals.

We excluded non-English papers, animal research studies,
opinion pieces, letters, studies not specifically focusing on
central hemodynamics (eg, those focusing on renal dynamics),
studies using indirect calorimetry to measure postprandial
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thermogenesis, studies testing drug effects, studies focusing on
water ingestion, long-term effects of food, and studies primarily
examining central hemodynamic and thermoregulatory responses
to food intake during or after exercise.

Screening and Selection
All retrieved studies were exported to Covidence [23], which
automatically identified and removed 1419 duplicates. In total,
2 reviewers independently conducted the title and abstract
screening and the full-text review. In cases of disagreement
between the 2 reviewers, a third reviewer acted as an
adjudicator.

Data Extraction and Synthesis
A total of 2 reviewers independently conducted data extraction,
study quality assessment, and risk-of-bias assessment for each
included study. Any conflicts or discrepancies were resolved
by an adjudicator. In addition, if any of the included studies
referenced other studies that met our eligibility criteria, we also
extracted relevant information from those referenced studies.
We extracted 8 study characteristics from the included studies
(Multimedia Appendix 2).

Due to the heterogeneity in the outcomes and designs of the
included studies, we used a narrative data synthesis approach.
In our characteristic tables (Multimedia Appendix 2), we
summarized key findings from each study, identifying common
themes, patterns, and differences. This approach allowed us to
integrate both quantitative and qualitative data, thus providing
a comprehensive overview of the current landscape. Finally, all
graphs were generated using ggplot2 in R (version 4.0.2; R
Foundation for Statistical Computing).

Results

Our search retrieved 11,450 studies (1419 duplicates), resulting
in 10,031 studies being screened (Figure 1). Following the title
and abstract screening, 273 studies progressed to the full-text
review. Out of these, 21 studies met the eligibility criteria. In
addition, we conducted a nested search within the references of
the 21 studies and identified 6 additional relevant studies. We
excluded 2 studies from the original 21 as they were review
papers referencing other studies already included in our analysis.
Finally, we extracted data from the included 25 studies and
proceeded to analyze them.
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) diagram illustrating the article selection process.

To assess overall study quality and risk of bias, we developed
a custom tool comprising 4 categories: high, medium, low, and
very low (Multimedia Appendix 3). This assessment tool was
based on the Cochrane assessment framework [24]. In total, 2
reviewers independently evaluated the study quality and risk
of bias for each study, with an adjudicator resolving any
conflicts. Among the 25 included studies, 32% (8/25) were
classified as high quality, 52% (13/25) as medium quality, and
16% (4/25) as low quality (Multimedia Appendix 3).
Furthermore, we found no evidence of publication bias in any
of the included studies.

Of the included studies, 14 physiological responses were
recorded. Multimedia Appendix 4 presents a breakdown of the
number of studies reporting each postprandial physiological
response. The number of participants per study ranged from 4

to 104, with a mean of 17 (SD 19). Out of the 416 participants
in the 25 included studies, 230 (55.3%) were male, 180 (44.3%)
were female, and the remaining 6 (1.4%) had unknown sex. The
age of the participants in the included studies ranged from 18
to 69 years, and all participants were healthy. The sessions
varied in duration, spanning from 10 minutes to 8 hours, and
the provided food items included cake, cheese, filet mignon,
and boiled eggs, among other foods.

Our findings overwhelmingly demonstrate a significant increase
in heart rate after eating; 19 included studies investigated heart
rate, and all 19 studies showed a statistically significant (P<.05)
rise ranging from 6% to 21% (Multimedia Appendix 2).
Furthermore, the postprandial effects of heart rate were found
to be generally similar in both supine and erect positions
(Multimedia Appendix 2). In addition, there was strong evidence
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supporting an increase in cardiac output after food ingestion,
with 18 of the 19 studies on cardiac output showing a
statistically significant (P<.05) postprandial increase ranging
from 9% to 100%, and only 1 study showing a statistically
insignificant (P>.05) response for a high-fat liquid meal
consisting of emulsified peanut oil (Multimedia Appendix 2).
Similarly, data from 11 studies revealed strong evidence
supporting a postprandial increase in stroke volume, ranging
from 18% to 41% (Multimedia Appendix 2). These results
collectively highlight the consistent and significant
cardiovascular responses associated with food intake.

Out of the 25 included studies, 16 (64%) investigated the
response of blood pressure to food ingestion; however, the
results were inconclusive (Multimedia Appendix 2). Among
these studies, 7 observed a postprandial increase in systolic
blood pressure, while 4 found a statistically insignificant (P>.05)
response, and 1 study even reported a postprandial decrease.
Similarly, 8 studies found a postprandial decrease in diastolic
blood pressure, while 3 studies found a statistically insignificant
(P>.05) response, and 1 study observed a postprandial increase.
Regarding mean blood pressure, the findings indicated either
inconsistent postprandial behavior or a statistically insignificant
(P>.05) response (Multimedia Appendix 2).

A total of 2 studies investigated the response of vascular
resistance to food ingestion; one study focused solely on
systemic vascular resistance, while the other study researched
both systemic and mesenteric vascular resistance (Multimedia
Appendix 2). Both studies observed a statistically significant
(P<.05) postprandial decrease in vascular resistance.

In addition, 6 studies examined the response of blood flow in
the hand, calf, and superior mesenteric artery to food ingestion
(Multimedia Appendix 2). However, the postprandial effects
of blood flow in the hand or calf were unclear. A total of 2
studies indicated a statistically significant (P<.05) postprandial
increase in hand and calf blood flow, while 3 studies found a
statistically insignificant (P>.05) change (Multimedia Appendix
2). Furthermore, 5 studies explored the response of oxygen
uptake to food intake. In total, 3 of these studies observed a
postprandial increase in oxygen uptake (more details in
Multimedia Appendix 2). In addition, 1 study showed an
inconsistent response, and another reported a statistically
insignificant change (P>.05). Finally, the postprandial effects
of skin or core temperature were found to be grossly inconsistent
(Multimedia Appendix 2). A total of 5 studies reported
inconsistent responses of skin or core temperature to food
ingestion, 2 studies observed a postprandial increase, and 1
study found a statistically insignificant (P>.05) response
(Multimedia Appendix 2).

Discussion

The primary objective of this systematic review was to
investigate central hemodynamic and thermoregulatory
responses to food intake as potential biomarkers for detecting
eating events. Among the 25 studies included in this review, at
least 95% (heart rate: 19/19, cardiac output: 18/19, stroke
volume: 11/11) of those investigating the response of heart rate,
cardiac output, and stroke volume to food ingestion reported
consistent, statistically significant (P<.05) elevations in these
variables. In contrast, the postprandial thermoregulatory effects
were markedly inconsistent across the 8 studies that investigated
them.

Our findings provide valuable insights into the physiological
changes that occur after food consumption and shed light on
potential biomarkers for detecting eating events. They
consistently demonstrate significant cardiovascular responses
associated with food intake (Multimedia Appendix 2).
Specifically, heart rate showed a significant increase after eating,
as evidenced by 19 studies, with the rise ranging from 6% to
21% (Multimedia Appendix 4 and Textbox 1). Similarly, cardiac
output and stroke volume exhibited a robust postprandial
increase, with 18 studies on cardiac output showing a significant
rise ranging from 11% to 100%, and 11 studies revealing a
postprandial increase in stroke volume, ranging from 18% to
41% (Multimedia Appendix 4 and Textbox 1). These findings
suggest that heart rate, cardiac output, and stroke volume may
serve as reliable biomarkers for detecting eating events.
However, it is worth mentioning that 1 study reported a
statistically insignificant (P>.05) cardiac output response to a
high-fat liquid meal [25], while 9 studies reported different
postprandial effects depending on the composition of the
consumed food, underscoring the potential influence of dietary
composition on cardiovascular reactions. Consequently, it is
worth exploring whether eating detection using cardiovascular
responses, particularly heart rate, could be enhanced to sense
macronutrients in the ingested food. A particular area of focus
could be carbohydrate-aware eating detection platforms, which
would have the ability to classify the amount of carbohydrates
in the food a person has just eaten into 2 classes that are
high-carbohydrate and low-carbohydrate. We anticipate this to
be feasible since several studies have demonstrated that
postprandial heart rate changes within the first hour of eating
correlate with the carbohydrate content in the food an individual
has just consumed [25-28]. Accordingly, individuals could
receive alerts when their meals are carbohydrate-rich, thus
empowering them with more information about the foods they
consume. In addition, decision support systems for diabetes
management could use the inferred postprandial carbohydrate
information to improve patient outcomes by personalizing
patient recommendations based on their diet information.

Textbox 1. Postprandial percentage increase range for cardiac output, stroke volume, and heart rate.

Postprandial percentage increase range

• Cardiac output: 9%-100%

• Stroke volume: 18%-41%

• Heart rate: 6%-21%
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Currently, there are no noninvasive consumer or medical-grade
wearables capable of measuring cardiac output and stroke
volume. As a result, heart rate remains the only signal that could
feasibly be used in everyday eating detection platforms. Studies
using heart rate for eating detection are already underway, but
they have primarily focused on animal studies so far [29,30].
A notable study conducted in humans used consumer
smartwatches and successfully detected eating events using
heart rate with an accuracy of 98.6% [31]. However, the
sensitivity, specificity, and F1-scores were very low, with an
F1-score as low as 2% in one of the experiments [31]. We
anticipate that using high-resolution data and conducting initial
experiments in stationary situations without vigorous physical
activity could facilitate a better understanding of heart
rate–based eating detection systems.

Conversely, the findings concerning blood pressure responses
were inconclusive. Of the 25 studies included, 16 (64%)
investigated blood pressure changes following food ingestion;
however, the results were inconsistent for systolic, diastolic,
and mean blood pressure changes (Multimedia Appendix 2).
The lack of consensus on blood pressure responses may limit
its potential as a reliable biomarker for eating detection using
wearable devices.

Vascular resistance and blood flow were also examined in a
subset of the included studies (n=2 and n=6, respectively).
Interestingly, vascular resistance showed a consistent
postprandial decrease in both studies that investigated this
parameter (Multimedia Appendix 2). On the other hand, the
effects of postprandial blood flow in the hand, calf, and superior
mesenteric artery were inconclusive, with some studies
indicating postprandial effects, while others found no significant
changes (Multimedia Appendix 2). Consequently, the use of
vascular resistance and blood flow as biomarkers for eating
detection may require further investigation and validation.

Furthermore, oxygen uptake responses after food intake were
explored in 5 studies (Multimedia Appendix 2). While 3 studies
showed a postprandial increase in oxygen uptake, 1 study
reported inconsistent results, and another found no significant
change. These mixed findings suggest that oxygen uptake may
have limited use as a standalone biomarker for wearable-based
eating detection.

Finally, postprandial temperature effects were found to be
grossly inconsistent (Multimedia Appendix 2). While many
studies have focused on determining the thermic effect of food
[32-34] through calorimetry, very little is known about the skin
or core temperature response to eating, and this review aimed
to bridge that gap. Among the included studies, 2 reported a
postprandial increase in temperature, while 5 studies revealed
inconsistent responses, and 1 study found no significant change
(Multimedia Appendix 2). The inconsistency in temperature
responses warrants caution when considering temperature-based
biomarkers for eating detection. In addition, temperature can
be easily affected by environmental factors, and there is often
a time lag before individuals elicit any temperature change in
response to any physiological or environmental factors.

While our systematic review provides valuable insights, there
are several limitations that should be acknowledged. First, the
available literature on central hemodynamic and
thermoregulatory responses to food intake might be limited,
potentially leading to a restricted pool of studies to learn from.
Sample sizes and study methodologies varied significantly, and
this heterogeneity could have affected the ability to draw
definitive conclusions for many variables. Furthermore, the
majority of the studies focused on heart rate, cardiac output,
and stroke volume, leaving other potential biomarkers
underexplored. The inconsistency in the postprandial effects on
blood pressure, blood flow, oxygen uptake, and temperature
further highlights the need for more comprehensive research in
these areas. In addition, it is important to note that all included
studies were based on healthy participants, so the results from
this review might not be fully extensible to the broader
population, and their applicability to individuals with specific
health conditions remains uncertain.

Out of the 25 included studies, 19 (76%) were conducted before
2000 using contemporary devices, which might have
compromised the results’ quality compared with more recent
studies that may have benefitted from the advances in modern
technology. Recent advancements in precision, data collection,
and analytical tools could significantly improve the accuracy
and reliability of these findings. All studies included in this
review had the goal of wanting to understand the postprandial
effects of the concerned signals, and they were measuring
changes in a discrete fashion as opposed to a continuous fashion.
Furthermore, the quality assessment of the included studies
indicated that 17 (68%) of the studies were categorized as
medium or low quality, mostly because they did not provide
information on the devices used or the frequency at which data
was collected. While efforts were made to minimize bias during
the review process, the quality of data reported in the primary
studies could influence the overall robustness of our findings.

Overall, the insights gained from this systematic review provide
a strong foundation for future research and the development of
wearable technologies aimed at enhancing eating detection and
monitoring. Central hemodynamic responses, particularly heart
rate, offer promising prospects for wearable-based eating
detection. As other identified biomarkers, such as cardiac output
and stroke volume cannot be measured by any currently
available noninvasive medical or consumer-grade wearable,
heart rate remains a valuable signal for this purpose.

Given the consistent postprandial heart rate effects in both
supine and erect positions, heart rate–based eating detection
technologies have the potential to revolutionize assisted living
care, particularly in enhancing monitoring and support for
bedridden individuals. For instance, this technology could track
and verify that patients are receiving meals at prescribed times,
providing reassurance to doctors and family members that
dietary guidelines are being followed and proper care is being
administered. Despite its potential, the complexity of the heart
rate signal, influenced by factors such as physical exercise [35]
and stress responses [36], may complicate its ability to detect
eating events. To accurately identify eating episodes, algorithms
must account for these variables and differentiate between heart
rate changes due to eating and other activities. Integrating heart
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rate data with additional sensors, such as electrodermal activity
(EDA) sensors, which measure skin conductance and emotional
states [37,38], and inertial measurement units (IMUs) sensors,
such as accelerometers and gyroscopes, which monitor physical
activity or hand movements, could enhance algorithm
performance. This multimodal approach increases context
awareness, allowing for clearer distinctions between
physiological changes from eating and other activities, such as
exercise or emotional states. By reducing false positives, such
systems can become more sensitive and specific to changes
associated with eating. It is also important to note, however,
that many signals, including heart rate, EDA, and IMUs, carry

the risk of reidentification [39]. Therefore, any systems using
these signals should be properly secured to mitigate this privacy
concern.

In conclusion, central hemodynamic responses, particularly
heart rate, show promise for wearable-based eating detection.
Future studies could aim for larger sample sizes, standardized
protocols, and well-controlled experimental conditions to
enhance the generalizability and reliability of the results. In
addition, investigating how these findings apply to diverse
populations and individuals with specific health conditions is
crucial for broader application and impact.
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