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Abstract

Background: Mental disorders have ranked among the top 10 prevalent causes of burden on a global scale. Generative artificial
intelligence (GAI) has emerged as a promising and innovative technological advancement that has significant potential in the
field of mental health care. Nevertheless, there is a scarcity of research dedicated to examining and understanding the application
landscape of GAI within this domain.

Objective: This review aims to inform the current state of GAI knowledge and identify its key uses in the mental health domain
by consolidating relevant literature.

Methods: Records were searched within 8 reputable sources including Web of Science, PubMed, IEEE Xplore, medRxiv,
bioRxiv, Google Scholar, CNKI and Wanfang databases between 2013 and 2023. Our focus was on original, empirical research
with either English or Chinese publications that use GAI technologies to benefit mental health. For an exhaustive search, we also
checked the studies cited by relevant literature. Two reviewers were responsible for the data selection process, and all the extracted
data were synthesized and summarized for brief and in-depth analyses depending on the GAI approaches used (traditional retrieval
and rule-based techniques vs advanced GAI techniques).

Results: In this review of 144 articles, 44 (30.6%) met the inclusion criteria for detailed analysis. Six key uses of advanced GAI
emerged: mental disorder detection, counseling support, therapeutic application, clinical training, clinical decision-making support,
and goal-driven optimization. Advanced GAI systems have been mainly focused on therapeutic applications (n=19, 43%) and
counseling support (n=13, 30%), with clinical training being the least common. Most studies (n=28, 64%) focused broadly on
mental health, while specific conditions such as anxiety (n=1, 2%), bipolar disorder (n=2, 5%), eating disorders (n=1, 2%),
posttraumatic stress disorder (n=2, 5%), and schizophrenia (n=1, 2%) received limited attention. Despite prevalent use, the efficacy
of ChatGPT in the detection of mental disorders remains insufficient. In addition, 100 articles on traditional GAI approaches
were found, indicating diverse areas where advanced GAI could enhance mental health care.

Conclusions: This study provides a comprehensive overview of the use of GAI in mental health care, which serves as a valuable
guide for future research, practical applications, and policy development in this domain. While GAI demonstrates promise in
augmenting mental health care services, its inherent limitations emphasize its role as a supplementary tool rather than a replacement
for trained mental health providers. A conscientious and ethical integration of GAI techniques is necessary, ensuring a balanced
approach that maximizes benefits while mitigating potential challenges in mental health care practices.
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Introduction

Background
Mental disease is among the top 10 leading causes of global
burden [1]. One out of every 2 people worldwide will develop
at least 1 mental disease in their lifetime [2]. Depression and
anxiety disorders are among the most prevalent mental health
conditions, significantly impacting individuals’ quality of life.
It is estimated that approximately 280 million people worldwide
are living with depression, with another 301 million
experiencing anxiety [3]. These mental diseases can lead to
debilitating symptoms, impairing social functioning, and
affecting overall well-being [4,5]. People with depression or
anxiety are also at a high risk of suicide. More than 700,000
people take their lives every year, with >77% of global suicides
occurring in low- and middle-income countries [6].

Despite concerted efforts to address mental health problems,
several challenges persist. Limited access to mental health
services, especially in resource-limited countries, resulted in a
huge treatment gap in mental health care [7]. The lack of
sufficient trained mental health professionals further exacerbates
this problem, leading to long waiting times for consultations
and inadequate support [8]. In addition, stigma and
discrimination surrounding mental health continue to hinder
individuals from seeking the help they need. Many individuals
feel ashamed or worried about the potential consequences of
disclosing their mental health conditions, thus impeding early
intervention and treatment [7].

Artificial intelligence (AI) appears as a viable alternative for
facilitating accessibility, affordability, and anonymity in
psychiatric diagnosis and treatment due to its capability to mimic
human cognitive functions to learn and make decisions [9]. This
is particularly true in machine learning (ML), which constitutes
a crucial foundation for AI and focuses on the development of
algorithms to learn patterns from training data. ML models can
be broadly classified into 2 types: discriminative and generative
[10]. In AI systems, discriminative AI models refer to a subset
of AI techniques and models that focus on learning the mapping
from input data to output labels or categories [10,11]. This
approach aims to classify or predict outcomes based on input
features without necessarily understanding the underlying
relationships or causality in the data. Examples of discriminative
AI include image recognition systems and diagnostic systems
[11,12].

In prior research, 5 key domains have been identified using
discriminative models for bipolar disorder, which include
diagnosis, prognosis, treatment, data-driven research, and
clinical support [13]. While discriminative AI has been a crucial
component of the AI landscape over the past decade and has
reached a relatively advanced stage of development, the field
of generative AI (GAI), by contrast, remains in its nascent stage.

GAI is a type of ML technology that possesses the ability to
automatically generate fresh output data by using the provided
input data [10]. In fact, the concept of GAI is not a recent
innovation but rather a technology that can be traced back to as
early as 1966 with ELIZA, a chatbot designed to simulate
conversation with a therapist, serving as an early example [14].
However, it is only in recent years that the culmination of
extensive research and developments in AI and ML has resulted
in the emergence of advanced GAI systems. Unlike traditional
GAI, which primarily relies on pattern-matching or rule-based
techniques [15], advanced GAI has shown superior performance
in autonomously producing synthetic data, text, images, and
even videos that resemble real-world examples [10]. Although
such an emerging field presents a novel and exciting
technological advancement, limited research has attended to
inform the application landscape of GAI in mental health care.
This indicates an urgent need to expand our knowledge about
the state-of-the-art technologies and illuminate their possibilities
in clinical and public mental health improvement.

Objective
The objective of this scoping review is to synthesize available
literature describing the use of GAI for mental health to inform
the current state of knowledge in this area. The findings of this
review can be used to inform various stakeholders, including
researchers, clinicians, and support seekers, about the potential
uses and implications of GAI in the field of mental health. To
achieve this purpose, the review is divided into 2 sections aiming
to provide a more thorough overview of the GAI’s
implementation in mental health care. The first section offers
a brief review of research using traditional GAI approaches.
These approaches include rule-based or retrieval-based systems
that rely on predefined rules or logic statements to perform tasks
or generate responses. This contrasts with the discriminative
AI approach that involves training models on labeled data to
classify inputs into different categories or predict outcomes.
The second section presents an in-depth analysis of studies that
leveraged advanced GAI. The in-depth review is responsible
for the identification of key use cases for advanced GAI
alongside its benefits and challenges, while the brief review
informs additional areas in which advanced GAI could be
leveraged to facilitate the development of evidence-based
interventions that can improve mental health outcomes.

Methods

Overview
A scoping review, according to Tricco et al [16], is a methodical
strategy for “charting” or “mapping” a larger subject than a
systematic review usually tackles. This approach becomes
essential when addressing the broad problems posed by patients,
physicians, politicians, and other decision makers. Therefore,
to achieve the objective of this study, we conducted a scoping
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review following the PRISMA-ScR (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses extension for
Scoping Reviews) [16].

Search Strategy
The search for relevant studies was conducted between January
1, 2013, and July 28, 2023. The chosen time range is critical
for including the latest findings and approaches, ensuring that
the research stays relevant and applicable in the evolving field
of GAI development [17]. This period also witnessed the
emergence of sophisticated GAI tools, which fundamentally
transformed approaches to mental health care, shifting from
text-based interactions to more engaging forms of mental health
support [17,18]. To cover both general and health care–specific
sources, we searched records within 3 reputable international
databases (ie, Web of Science, PubMed, and IEEE Xplore). In
addition, we expanded our search by including 2 Chinese
databases, CNKI, and Wanfang, to broaden the scope of our
investigation. By including these diverse data sources, we aimed
to capture a wide range of literature on GAI from both global
and Chinese perspectives.

Given the novelty of the advanced technology, 2 preprint servers
(eg, medRxiv and bioRxiv) were consulted from January to July
2023 to inform the scope of literature delineating the use of
GAI models for addressing mental health issues. This is a
common practice often used by many researchers to locate other
emerging applications not yet captured by peer-reviewed
literature [19-22]. In order to include additional studies related
to our topic, we also performed a structured search on Google
Scholar for the identification of uncovered records, including
gray literature, and checked the reference lists of the included
studies. The search query mainly consists of 2 components:
GAI and relevant terms (eg, GAI OR generative model OR
ChatGPT) and mental health and related terms (eg, mental
health OR depression OR anxiety OR bipolar disorder). The
search strategies used varied depending on the characteristics
of the selected databases for the search inquiry, which are
provided in Multimedia Appendix 1.

This review considers only original research for inclusion.
Studies were included if they were empirical, leveraged
AI-based technologies to generate new outputs for mental health
enhancement, and were published in English or Chinese
language. However, articles presented in the form of opinions
or reports or not relevant to the production of new content were
excluded to ensure the relevance and accuracy of the review.

This scoping review categorizes the GAI into advanced GAI
and traditional GAI approaches. Advanced GAI features
state-of-the-art AI technology for creating new content, images,
audio, video, or codes with tools such as ChatGPT, MidJourney,
New Bing, and Dall-E2. These models often require huge
computing power including a significant amount of memory,
while traditional models mainly rely on predefined rules or
retrieval-based algorithms with patterns created by developers
on the basis of anticipated user queries [15]. Traditional GAI
approaches often have limited flexibility and can only provide
responses that have been explicitly programmed into their

system [23]. This differentiation was deemed essential due to
the extensive volume of literature that was identified during the
scoping review process. More details of the categorization of
traditional and advanced GAI modeling approaches are listed
in Multimedia Appendix 2.

Data Screening and Extraction
All collected records were first imported into EndNote Software
(version 20; Clarivate), a literature management software for
data screening and storage. Duplicate records were removed,
and the remaining articles were screened for relevance based
on the information provided in titles and abstracts by one
reviewer. This was followed by the other reviewer performing
the second stage of screening, which evaluates the full text of
articles based on the inclusion and exclusion criteria. Regular
scrutiny was held during the screening process to deliberate and
address any ambiguities or disagreements and achieve a
consensus among both reviewers [24]. A continual reassessment
of the understanding of the screening criteria was undertaken.
In instances where questions arise, efforts were made to retrace
our steps and ascertain the accurate and consistent application
of the criteria to guarantee that the screening process maintained
a uniform and unbiased standard.

After that, pertinent data were extracted, and a thorough analysis
of the application of advanced GAI models for mental health
care was carried out. The first author methodically gathered
these data, which contain details about the mental health issues
addressed, the targeted population, the application setting, the
use case, the results, the study phase, the data source, the type
of approach, the delivery mechanism, and so on. The extracted
data were then synthesized through a narrative method. Our
goal was to categorize the GAI studies based on the extracted
data. For this purpose, we modified various taxonomies found
in existing literature [18,25]. We compiled the characteristics
of the studies into a table and provided a narrative description.
Following this, we presented an overview of the features in the
studies included. The PRISMA checklist was provided in
Multimedia Appendix 3 to show the completeness and
transparency of the review’s reporting [16].

Given the volume and homogenization of relevant studies on
the implementation of traditional GAI approaches, a brief review
of these approaches focused only on a summary of use cases
rather than penetrating the details. The purpose of a brief review
is to reveal additional domains in which advanced GAI models
can leverage to enhance the provision of mental health care.

Results

Overview
The structured search on databases identified 1577 unique
records, of which 1323 (83.89%) were peer reviewed and 254
(16.11%) were preprints. The 2-stage screening process resulted
in 144 articles eligible for scoping review, including 44 (31%)
documents applying advanced GAI and 100 (69%) traditional
GAI approaches. A modified PRISMA flow diagram illustrating
the process of record selection is shown in Figure 1.
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Figure 1. Modified PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram of document selection. CNKI:
China National Knowledge Infrastructure; GAI: generative artificial intelligence.

Limited Review of Traditional GAI Models for Mental
Health
Of the 100 included records that reported the use of traditional
generative approaches, 97 (97%) were derived from
English-language literature, while only 3 (3%) were sourced
from Chinese-language literature (Multimedia Appendix 4
[3,6,12,14,17-19,21,26-53]). The research targeted a variety of
populations with mental illness in diverse contexts ranging from
generic workplaces to health care systems. Traditional GAI
approaches in mental health care have mainly emphasized 2

capabilities: music synthesis and the generation of humanlike
conversation to support mental health–related tasks. Among
these capabilities, generating humanlike conversations in the
form of chatbots has been widely adopted to enhance mental
health services and their accessibility. A notable field is the
delivery of nonpharmacological treatment such as recollection
of negative events [54], spiritual and religious intervention [55],
or guiding mindfulness and emotional intelligence practice [26]
to help individuals with mental conditions. Examples of the
characteristics and use cases in which traditional generative
approaches were applied are provided in Table 1.

Table 1. Main characteristics of the literature adopting traditional generative artificial intelligence approaches.

ExampleCharacteristic

Perinatal depression [27]; postpartum mental health [28]; examination stress [29]; foreign language
anxiety [56]; eating disorder [57]; autism and achluophobia [30]; suicide risk [58]; substance abuse
[31]; post-traumatic stress disorder [32]; bipolar affective disorder [59]

Mental health problems addressed

Students [33]; adults [60]; aging adults [54]; return-to-work workers [61]; soldiers [62]; employees
[34]; pregnant women [27]; postpartum populations [28]; patients with cardiovascular disease [59]

Targeted population

Workplace [61]; military [62]; school [35]; health care system [63]Application context

Application capabilities

Music production for emotion expression [64]Music synthesis

Generation of humanlike conversation to support tasks

Connecting help seekers to mental health professionals [65]; promoting deep self-disclosure of help
seekers for mental health professionals [36]

Assistance in clinical practice

mental health condition evaluation [66]; tracking emotion disorder [67]; mental disorder prevention
[68]

Screening, monitoring & prevention
of symptoms

Coping strategies [37]; customized individual suggestions [38]; resource (eg, study tips) for stress relief
[69]; psychoeducation on body image and eating disorders [39]

Self-care suggestions, resource &
psychoeducation

Recollection of negative events [54]; companionship support [40]; mindfulness and emotional intelli-
gence practice [26]; cognitive behavioral therapy delivery [35]; behavioral activation therapy delivery
[14]; religious intervention [55]; promotion of positive psychology [41]; emotional support [70]

Nonpharmacological intervention

Stress management [42]; depressive disorder management [71]Management of symptoms

Interact J Med Res 2024 | vol. 13 | e53672 | p. 4https://www.i-jmr.org/2024/1/e53672
(page number not for citation purposes)

Xian et alINTERACTIVE JOURNAL OF MEDICAL RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


In-Depth Review: Research Trend of Leveraging
Advanced GAI Models for Mental Health
Of the 44 included articles in an in-depth review, 36 (82%)
studies were in English, while the remaining 8 (18%) were
Chinese-language literature. Less than half of the studies (20/44,
45%) were published or completed in 2023, and 32% (14/44)
are conference papers, followed by 48% (21/44) journal articles,
18% (8/44) preprints, and 2% (1/44) gray literature (literature
published by a notable institution without peer review).

The in-depth review of English-language literature demonstrated
a wide dispersion of countries authors represented. The findings
showed that scholarly contributions in the included studies
originated from 17 different countries. Among these, the United
States emerged as the most prolific contributor in terms of
volume (14/44, 32%), followed by China and India, both of
which made an appropriate number of contributions (5/44, 11%).
In addition, the United Kingdom and Korea both accounted for
the same shares of studies (3/44, 7%), followed by Canada and
Australia (2/44, 5%). Other infrequent contributors included
Japan, Finland, the United Arab Emirates, Switzerland,
Morocco, Philippines, Poland, Israel, Czech Republic, and
Malaysia (1/44, 2%).

For all studies included in the in-depth review, the number of
authors involved in each research ranged from 1 to 8, with an
average number of 3.75 (SD 1.66). Most of the included studies
(17/44, 39%) have been authored by 5 researchers or more,
while a single author was only shown in 25% (11/44) of the
studies. Most of the studies (37/44, 84%) concentrated on the
development and validation of advanced GAI techniques, and
7 (16%) studies evaluated the efficacy of the application of GAI
models for informing clinical and public mental health practices.

Of the 44 included studies, most (n=28, 64%) targeted mental
health concerns through general public approaches. These
studies covered a broad spectrum of conditions and challenges
affecting people’s emotional, psychological, and social
well-being. This is followed by specific conditions such as
depression (9/44, 20%), both anxiety and depression (5/44,
11%), bipolar disorder (2/44, 5%), posttraumatic stress disorder
(2/44, 5%), anxiety (1/44, 2%), eating disorder (1/44, 2%), and
schizophrenia (1/44, 2%). Advanced GAI techniques were
widely used to address these concerns, with the generative
pretrained transformers (GPTs) being the most popular

(aggregated by all GPT variants; 23/44, 52%). Specifically,
30% (13/44) of the studies highlighted GPT-3 or GPT-3.5 model
or relevant variants, and 18% (8/44) described the use of GPT-2.
Other popular techniques that are often applied in generative
models include the long short-term memory (LSTM) architecture
(11/44, 25%) and generative adversarial networks (6/44, 14%).
Most of the included studies used publicly available data sets
(19/44, 43%) as their main data sources, followed by other
varied sources (14/44, 32%) and social media data (9/44, 20%).
Private data were the least prominent source of data used in the
studies (2/44, 5%).

The output of the advanced GAI models reported in the included
studies (n=44) was available in 3 forms. Text generation was
the most common form (32/44, 73%), followed by audio (in the
form of music; 9/44, 20%) and image (4/44, 9%). Only 1 study
was reported to include both forms of text and audio [43]. Of
the included studies, approximately 66% (29/44) reported using
advanced GAI for enhancing mental health care among the
public. In contrast, around 7% (3/44) focused on the facilitation
of clinical practice for clinicians and mental health professionals.
A total of 2 (5%) studies specifically targeted the student
population, whereas other groups such as children [44], peer
supporters [72], and suicide gatekeepers [73] received limited
attention. Details of the characteristics of the included studies
are provided in Table 2.

The in-depth review identified 7 crucial use scenarios in which
advanced GAI models were used. Beyond the regular aspects
of the detection and treatment of mental disorders, the scenarios
also extend to emerging areas, including goal-driven
optimization and clinical training. It is worth noting that during
the past few years, there has been a noticeable trend in the
mental health field of increased interaction with advanced GAI
models. Before 2020, research in this area was limited, with
only a few studies in counseling support and therapeutic
application. However, starting in 2021, there has been an
upsurge in research in a number of use cases, with the most
notable expansion in counseling support and therapeutic
application, suggesting growing interest in advanced GAI in
these domains. In comparison, new study fields such as clinical
training and facilitation of clinical decision-making started to
appear in 2023, although there were fewer studies in these areas
than in others. An overview of the use areas of advanced GAI
models over time is provided in Table 3.
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Table 2. Characteristics of the included studies that used advanced generative artificial intelligence (GAI) for mental health (n=44).

ReferencesStudiesCharacteristics

—a3.75 (1.66; 1-8)Number of authors, mean (SD; range)

Authors, n (%)

[44-46,74-81]11 (25)1

[43,47-50,82-92]16 (36)1-5

[51-53,72,73,93-104]17 (39)≥5

Study phase, n (%)

[43,44,46,47,49,51-53,72,73,75,77-83,85-101,103,104]37 (84)Development and validation of GAI tech-
niques

[45,48,50,74,76,84,102]7 (16)Efficacy of GAI models

Mental health outcome, n (%)

[43,46,47,51-53,72,77,79-85,87-95,99,101,102,104]28 (64)General mental health

[45,48,49,73,75,76,78,98,100]9 (20)Depression

[104]1 (2)Anxiety

[74,86,96,97,103]5 (11)Anxiety and depression

[74,97]2 (5)Bipolar disorder

[84]1 (2)Eating disorder

[84]1 (2)Schizophrenia

[84,101]2 (5)PTSDb

Data sources , n (%)

[49,82]2 (5)Private data

[43,48,72,85,87,94,98,101,103]9 (20)Social media data

[44,46,47,50,51,53,77,79-81,83,86,88,89,96,97,99,100,102]19 (43)Publicly available data set

[45,52,73-76,78,84,90-93,95,104]14 (32)Other sources

Type of techniquesc, n (%)

[53,72,77,79,81,88,89,98]8 (18)GPT-2d

[45,48,49,73,74,84,87,90,93,95,99,101,102]13 (30)GPT-3 or GPT3.5

[76]1 (2)GPT-4

[47]1 (2)DialoGPT

[44,51,75,78,83,100]6 (14)GANse

[94]1 (2)PanGu 350 M/WenZhong-110M (a type of

LLMf in Chinese)

[50]1 (2)HyperCLOVA (a type of LLM)

[92]1 (2)Markov chain

[44,46,53,75,85,86,90,96,100,103,104]11 (25)LSTMg

[91]1 (2)GRUh

[52]1 (2)Midjourneyi

Delivery mode , n (%)

[43,45-49,72-74,76-78,80-82,84,85,87-90,93-103]32 (73)Text

[43,50,53,75,79,86,91,92,104]9 (20)Audio

[44,51,52,83]4 (9)Image

Groups receiving benefit , n (%)
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ReferencesStudiesCharacteristics

[47,48,50-53,74,75,77-86,88-93,95,97-99,104]29 (66)General population

[45,76,94]3 (7)Clinicians and mental health professionals

[43,46]2 (5)Students and youth

[44]1 (2)Children

[72]1 (2)Peer supporters

[73]1 (2)Suicide gatekeepers

[49,87,96,100-103]7 (16)Not reported

aNot applicable.
bPTSD: posttraumatic stress disorder.
cIndicates the models or components used in generative tasks.
dGPT: generative pretrained transformer.
eGAN: generative adversarial network.
fLLM: large language model.
gLSTM: long short-term memory.
hGRU: gated recurrent unit.
iThe creators of Midjourney do not provide any details regarding the training models used or the integration process. Moreover, they have not made
their source code available for public access.

Table 3. An overview of studies adopting advanced generative artificial intelligence (GAI) models for mental health uses between 2013 and 2023
(in-depth review).

YearUse cases

Overall

(n=44), n (%)

2023

(n=20), n (%)

2022

(n=14), n (%)

2021

(n=5), n (%)

2013–2020

(n=5), n (%)

4 (9)2 (5)2 (5)——aDetection of mental problems

13 (30)6 (14)4 (9)1 (2)2 (5)Counseling support

19 (43)5 (11)7 (16)4 (9)3 (7)Therapeutic application

1 (2)1 (2)———Clinical training

3 (7)3 (7)———Facilitation of clinical decision-
making

4 (9)3 (7)1 (2)——Goal-driven optimization

aNot applicable.

Detection of Mental Problems
Advanced GAI has the potential to play a crucial role in the
early detection and monitoring of mental health problems,
facilitating timely interventions and support; 4 (9%) out of 44
studies in the in-depth review focused on the use of advanced
GAI for mental disorder detection through content mining and
analysis. Two studies focused on the scrutiny of social media
data to track the mental health status of online users by analyzing
social media activities. One study used advanced neural network
architectures such as bidirectional encoder representation from
transformers and Bi-LSTM to detect signs of anxiety and
depression through expression in unstructured user-generated
posts on Reddit and Twitter to inform online users’ mental
health conditions [104]. The other one, a preprint study,
evaluated the performance of a wide array of large language
models on mental health prediction through online data from
Reddit [102]. Besides using social media data, researchers also
explored the use of private data sources, such as audio

recordings from interviews, as an alternative method to infer
individuals’ mental health conditions [49,102]. Although there
is an opportunity for using advanced GAI to identify potential
symptoms of mental disorder, the approaches used in the studies
showed varying performance, particularly for the GPT, which
was reported in 2 preprints, to underperform other fine-tuned
models, particularly in zero-shot prompting [101,102].

Counseling Support
The common use scenario of advanced GAI models for mental
health was counseling assistance (13/44, 30%). Eight studies
focused on the provision of emotional response in counseling,
among which 6 of them highlighted the development of
empathy-centric counseling chatbots to facilitate peer-to-peer
mental health support or preemptive health care
[47,72,81,84,90,98], 1 study developed humorous response in
psychiatric counseling through joke generation in sentences
[85]. Another study leveraged the large language models to
develop an open-domain audio-based chatbot (ie, CareCall) that

Interact J Med Res 2024 | vol. 13 | e53672 | p. 7https://www.i-jmr.org/2024/1/e53672
(page number not for citation purposes)

Xian et alINTERACTIVE JOURNAL OF MEDICAL RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


emotionally supports socially isolated individuals via check-up
phone calls [85]. Advanced GAI models were commonly used
in these studies to generate emotional responses that adapt to
the context of a conversation, which is unable to be implemented
in traditional rule-based or retrieval-based models [47].

Similar approaches were also explored to facilitate counseling
services by emphasizing personalization and user engagement
within counseling sessions; 5 (11%) studies documented the
use of advanced GAI approaches to generate tailored
recommendations such as lifestyle modifications and potential
treatment options for certain individuals with psychological
issues [46,74,79,80,82].

Therapeutic Application of GAI
Unlike counseling support, which mainly focuses on using
advanced GAI models to offer short-term and solution-based
psychological support with specific mental health issues,
therapeutic application targets long-term therapy for complex
and ongoing mental health challenges, incorporating diverse
interventions. The area of therapeutic application received the
highest proportion of studies (19/44, 43%). This includes
conventional, music, and art- or writing-related intervention.
The use of advanced GAI models for conventional assistance
in treatment made up the bulk of research on the therapeutic
area (8/44, 18%). Most research incorporated other traditional
AI approaches such as different classification algorithms and
fine-tuned GPT models to assist in the process of cognitive
behavioral therapy. Furthermore, 6 (14%) peer-reviewed studies
[43,48,77,78,88,97] and 1 (2%) preprint study [99] developed
models to generate motivational and affirmative texts or
reflections in response to distressed narratives or negative
thoughts. Another study used ChatGPT for awareness-related
intervention such as mindfulness-based therapeutic assistance
to reduce anxiety and improve mental health outcomes [93].

Supplementary data such as open-source data sets and
domain-specific data were commonly used in these studies to
provide the models with more context and reduce biases caused
by the reliance on vast amounts of unlabeled training data. Three
studies relied on Reddit data [43,48,77], and among them, 1
gray literature used dialogues extracted from Reddit emotional
distress–related conversations and the publicly available Counsel
Chat data set to generate reflections and paraphrases with a
GPT-2 generation model [77]. Other research highlighted the
situational attribute of data. Data containing various situations
from existing or program-synthesized data sets were used to
train and fine-tune GPT models to reframe negative thoughts
or generate a response with a positive mental outlook under a
depressing situation [88,99].

Examples where advanced GAI was used for music therapeutic
applications were also highlighted in the peer-reviewed
literature; 6 (14%) studies reported the use of advanced GAI to
produce music for mental health improvement. For example, a
system called DeepTunes was developed to generate music with
lyrics that contribute to positive emotional responses of users
[53]. To achieve this purpose, a facial recognition model
implemented by a convolutional neural network was used to
identify the emotions of the users by analyzing the photos they
provided and self-reported feelings. A lyric generation model

driven by GPT-2 followed to create lyrics based on the detected
emotions and the first line given by the users. Finally, a
music-generated model built on the LSTM networks was used
to produce music [53]. Similar approaches were also explored
within specific treatment scenarios targeting groups with stress
[92,104] or mental diseases including depression, early
childhood trauma, and Parkinson disease [75,86,91]. However,
all these approaches were designed to generate music to serve
the purpose of assisting in receptive rather than active
intervention in which patients are involved in creating music
themselves.

Another field involves art- or writing-related intervention. Three
studies focused on the AI-generated artwork to provide an
interactive AI painting experience for emotional healing of users
[44,52,83]. One study incorporated image generation in writing
therapy. It developed a system called StoryWriter to facilitate
the process of writing therapy by producing artwork from users’
narratives in real time [51]. However, concerns were also raised
on the generated images, which may undermine the therapeutic
benefits of writing tasks. In another study, the GPT-2 model
was fine-tuned with data training on short-form texts of poetry
and informal writing to generate poetry that resonates with the
emotional state of users, thereby provoking emotional reflection
and regulation in the user [89].

Clinical Training and Facilitation of Clinical
Decision-Making
The capabilities of advanced GAI models were far beyond the
management of mental health care. Literature reporting the use
of advanced GAI in other fields such as practitioner training
and clinical decision-making has emerged lately. One preprint
described a training of suicide gatekeepers through ChatGPT,
which was used to simulate a patient who is experiencing
suicidal ideation [73]. Three studies leveraged the advanced
GAI approaches to facilitate the process of decision-making for
mental health professionals: 2 studies focused on the use of
advanced GAI–based tools to assist clinicians in generating
medical reports or in triage and timely identification of urgent
cases [45,94]; the other study explored the use of ChatGPT-4
to assist clinicians in optimizing psychopharmacologic clinical
practice by providing multiple heuristics as rationale [76].

Goal-Driven Optimization
The advanced GAI approaches were also used for goal-driven
optimization to support mental health–related tasks. For
example, GAI has been applied to improve the accuracy and
safety of diagnostic tools as well as therapeutic interventions.
Three studies leveraged advanced GAI in data development: 2
preprints described the use of ChatGPT to generate new data
instances or multiturn conversation data sets, which help provide
more varied and realistic practice material for acquiring optimal
applications [87,95]; another study used real conversation
examples that were labeled to show certain features, such as
signs of depression. It then used these examples to create similar
new ones, providing a variety of realistic examples for ML
[100]. These data augmentation approaches are important for
mental health care applications since they develop diverse and
close-to-realistic data sets, addressing data issues such as small
volume, sparsity, or imbalance.
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In addition to data augmentation, safety and explainability in
advanced GAI are also important when optimizing natural
language generation of conversations within the field of mental
health. In response to this issue, 1 study incorporated the process
knowledge framework and advanced GAI techniques to generate
safety lexicons and knowledge base, making sure that the GAI
sticks to safety rules that are considered acceptable and works
safely and understandably in mental health situations [96].

Discussion

Principal Findings
In this scoping review, 6 key use cases were identified for
mental health care: mental problem detection, counseling
support, therapeutic application, clinical training, goal-driven
optimization, and clinical decision-making. Advanced GAI has
primarily been focused on therapeutic application, followed by
counseling support, while the use scenario in clinical training
remains a largely unexplored domain. ChatGPT has also been
adapted to provide mental health support by engaging in
conversations, offering coping strategies, and promoting
self-awareness in help seekers. While ChatGPT offers an
innovative approach to mental health support, its diagnostic and
medication recommendation abilities are hindered by several
limitations. Notably, ChatGPT exhibits low accuracy in
zero-shot classification for diagnoses, suggesting that it struggles
to accurately identify mental health conditions based on input
data alone. In addition, inconsistencies in prescribing drugs
raise concerns about the reliability of its responses in these areas
[74,105]. These inadequacies undermine ChatGPT’s
effectiveness in providing accurate and reliable support for
individuals seeking assistance with mental health concerns.

Comparing traditional and advanced GAI models, most studies
(71/100, 71%) that used traditional approaches mainly focused
on the development of chatbots and virtual assistants with their
conversational functions to enhance the mental well-being
experience. Although our in-depth review of the advanced GAI
also identified numerous examples of conversation generation,
more opportunities and possibilities have emerged with the
advancement of technology to complement the limitations of
traditional approaches. These advancements include (1)
advanced GAI in mental health care, which offers unique
advantages over traditional approaches. Unlike traditional
pattern-matching approaches, advanced GAI, driven by neural
networks, allows for engaging in personalized and empathetic
conversations through generating contextually relevant
responses, enhancing the overall counseling experience [98].
(2) Advanced GAI facilitates accuracy improvement in mental
health care through data augmentation. By generating synthetic
data closely mimicking real-world examples, these models
enhance predictive accuracy and adaptability across various
mental health conditions. (3) Advanced GAI excels in image
generation for therapeutic purposes. While preexisting patterns
used by traditional GAI often led to the production of generic
and repetitive visuals [106], advanced approaches allow for the
tailored creation of images to evoke specific emotional
responses, enhancing the therapeutic experience through
meaningful and relatable visuals.

The GAI Dilemma in Mental Health Care
While GAI has the potential to offer valuable support and
resources in the domain of mental health care, it also raises
important technical, ethical, and privacy concerns.

Technical Dilemma
Discourses in academic literature have elucidated various
potential paths through which GAI may be conducive to the
field of mental health care. Nevertheless, these advanced
technologies may effectively operate in a supplementary role
instead of a substitute for qualified mental health providers,
given their inherent limitations in clinical acumen.

ChatGPT, although not initially developed with a focus on
mental health, has been prevalently used in this domain due to
its expertise in handling routine and structured tasks. These
include offering general knowledge about mental illness and
coping strategies [74,76] and tailoring recommendations for the
generation of medical reports [45], highlighting the “mechanical
aspect” of mental health care. However, ChatGPT and similar
GAI systems struggle with replicating the “human aspect” of
mental health care, which includes the nuanced, personalized,
and empathetic approach that human mental health professionals
provide [48]. While efforts are being made to improve the
emotional awareness of GAI systems [47,90], achieving a degree
of emotional intelligence that goes beyond mere recognition
and reaches a true, humanlike comprehension and reaction to
emotions is a challenging endeavor. The effective use of GAI
in mental health care requires a profound understanding of the
nuances of human emotions, cultural variations, and individual
characteristics. To achieve this, it is crucial to not only foster
collaboration among AI experts, psychologists, and ethicists
but also actively include individuals with lived mental health
experiences. Furthermore, psychiatry involves holistic
assessments beyond mechanistic diagnoses, which GAI systems
alone might inadequately address, potentially leading to
misdiagnosis or insufficient care.

Ethical Dilemma
The ethical concerns involved posed another significant
challenge. Content creation by advanced GAI models is subject
to data sets; it is necessary to ensure that they are programmed
and trained in an ethically responsible way. This is because the
potential for biases, both explicit and implicit, in the data used
to train these models can reinforce existing stereotypes in mental
health and result in discriminatory or life-threatening outcomes.
Nabla, a health care company in Paris, used GPT-3 for mental
health promotion. Unexpectedly, when a user raised the
question, “Should I take my own life?” GPT-3 generated a
response of “I think you should,” which was considered to
encourage suicidal behavior, thereby sparking concerns
regarding the implementation of advanced GAI models in mental
health care [107]. The risk of algorithmic biases in training sets
could also lead to potential discrimination of marginalized
groups. This is particularly pertinent in mental health care, in
which algorithms may overlook or misrepresent the unique
needs of diverse populations, leading to unequal access to care
or misdiagnosis of marginalized communities [108]. For
instance, Buolamwini and Gebru [109] found that facial analysis
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algorithms have varying levels of accuracy among different
genders and races, highlighting concerns about the fair use of
AI in diagnosing mental health conditions. There is also concern
that overreliance on AI may undermine the value of human
expertise and skills, which are vital for providing empathetic
and nuanced mental health care [110].

Another concern is the “black box” problem, where the opacity
of AI decision-making processes challenges their scientific
reliability and raises ethical dilemmas [111,112]. This issue
emphasizes the need for regulations promoting AI transparency.
Particularly in urgent mental health scenarios, the inability to
interpret and verify AI-driven recommendations could lead to
critical decision-making challenges and potential risks.
Therefore, developing frameworks for understanding and
validating AI decisions in mental health care is not just a
scientific necessity but also an ethical imperative, calling for
an ongoing dialogue among clinicians, researchers, ethicists,
and policy makers.

Given the potential risk, ethical guidelines and frameworks
should be developed to define the appropriate use and limitations
of advanced GAI in mental health care, guiding practitioners
in responsible decision-making and emphasizing the importance
of a human-centered approach.

Safety and Confidentiality Dilemma
Another ethical challenge is the privacy and confidentiality of
sensitive personal information. Unintentional collection of
personal information can occur during users’ interactions with
GAI systems. This information may include users’ names,
identities, and contact information, which originate from
human-AI conversation history. The application of advanced
GAI models for data processing generates significant attention
regarding the potential disclosure or inappropriate use of
personal data [113]. This is of particular concern in mental
health care. One unique example that highlights this concern is
the practice of emotion detection, in which users’ facial
expression images are collected by advanced GAI systems for
mental health prediction [83]. These collected images have the
potential to be misused to infringe on individuals’privacy rights
and undermine their trust in mental health services. Hence,
implementing security measures, data anonymization techniques,
and clear consent mechanisms are critical steps in addressing
this dilemma and protecting the confidentiality of mental health
data.

Implications

Research Implications
The results of this study have several implications. First, by
highlighting the limited attention paid to the development of
advanced GAI systems for clinical training, our work fills in a
significant gap in the literature. Our findings emphasize the
necessity of additional investigation in this domain to ensure
that advanced GAI can be effectively used for training clinicians
and improving their skills in providing mental health care.
Second, our findings indicated a lack of research on specific
mental health conditions, particularly anxiety, bipolar disorder,
eating disorders, posttraumatic stress disorder, schizophrenia,
and others. Therefore, future research on the implementation

of advanced GAI should prioritize and invest more resources
into exploring and understanding such mental disorders. Third,
the results of this scoping review highlight the urgent need to
develop large databases that are specifically tailored for mental
health at the national or international level. Currently, the
available data sets for training advanced GAI models in mental
health care are limited in scope and diversity. The development
of large databases can help minimize biases and improve the
generalizability and accuracy of AI-generated recommendations
and interventions in mental health care. Fourth, this scoping
review indicates the necessity of developing advanced GAI
tools that incorporate different modes of generation. By
integrating text, image, audio, and video, mental health
professionals, care providers, or help seekers can benefit from
more comprehensive assessments, personalized interventions,
and interactive support systems.

Practical Implication
GAI indeed offers substantial potential within the mental health
care landscape, but this promising territory requires cautious
navigation. Instead of relying on GAI systems, such as
ChatGPT, recognizing the diverse applications of GAI and
tailoring practices to specific use cases is essential for
maximizing its benefits across the mental health area.

Different situations involving mental health care could call for
different approaches. A hybrid digital therapeutic approach,
wherein GAI enhances human capabilities, might be the most
appropriate in some use cases. For instance, to improve patient
engagement and customize treatment planning, mental health
providers could incorporate AI-generated content, such as
images or music, into therapy sessions as an additional resource.
In contrast, there are some circumstances in which an AI-led
approach to mental health care may be more successful since
GAI takes a more active part in monitoring the mental states of
help seekers, assists doctors in screening, and offers real-time
interventions when necessary. The situation-sensitive
incorporation of GAI into the field of mental health care can
empower mental health providers to adapt and optimize their
use of GAI tools, achieving a balance between technological
support and the “human touch.” Therefore, it is important to
find a balanced and ethical way to integrate GAI technologies
into mental health care, leveraging their benefits while avoiding
potential pitfalls related to oversimplifying or mechanizing care
practices.

Limitations
This study has limitations. First, preprint articles were included
in the review to capture the scope of the fast-growing body of
literature on advanced GAI. Nonetheless, it should be noted
that the results of these articles should be interpreted cautiously
since the preprint articles have not undergone a formal peer
review process. In addition, gray literature released by notable
academic institutions was also included to identify applications
of advanced GAI for mental health and other unique use
scenarios not covered by peer-reviewed or preprint articles.
While this is not a conventional approach, the inclusion of the
preprint and gray literature was considered an appropriate
practice, which has also been adopted by previous studies
[19,114].
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Second, there was a deviation from the PRISMA guidelines,
which recommend that the eligibility assessment should ideally
involve independent raters at each stage of the review process.
However, in this review, a single reviewer assessed the study
titles or abstracts, and then a different single reviewer evaluated
the full text of the studies included based on the title or abstract
to determine eligibility based on the full text. Although this was
due to the exploratory nature of our scoping review, which
aimed to map the breadth of literature rather than provide a
quantitative synthesis of study results, it may still increase the
possibility of selection bias. However, it is also worth noting
that while independent assessment by multiple reviewers is
ideal according to PRISMA guidelines, practical constraints
such as limited resources or time constraints may sometimes
necessitate deviations from this standard practice. In such cases,
transparent reporting of deviations and their potential
implications become even more critical for the readers’
understanding and interpretation of the review’s findings.

Third, this study aims to provide a basic understanding of the
role of advanced GAI in mental health care by exploring the
key use cases of advanced GAI models rather than a thorough
assessment of specific GAI approaches. Future research could
emphasize the practical effectiveness of these interventions in
clinical settings.

Fourth, the data synthesis process involved systematically
collating and analyzing the extracted data using a narrative
approach. This allowed the researchers to categorize and

describe the GAI studies based on various dimensions, providing
insights into the state of research in this field. However, it is
important to note that while narrative synthesis can be
informative, it may lack the quantitative rigor of other synthesis
methods such as meta-analysis [115,116]. Therefore, the
findings should be interpreted within the context of the study’s
methodology and limitations.

Conclusions
This study provides insights into the present status of GAI use
in mental health care research and highlights the potential
aspects that can guide future research, practical applications,
development, and policy making within this domain. Through
an in-depth review, 6 key scenarios using the advanced GAI
models have been identified, which include the detection of
mental disorders, counseling support, therapy delivery, clinical
training, goal-driven optimization, and clinical decision-making
support. However, the findings in this review are preliminary
due to the risks associated with preprints, such as potential
quality and reliability issues. Even with pre- or postmoderation
systems, preprints without independent peer reviews can contain
low-quality or misleading information, which is concerning in
public health contexts due to possible consequences. Therefore,
readers should be cautious when interpreting preprint findings,
as the accuracy of the methodological details of the included
documents may not have been explored in depth. Enhanced
transparency and scrutiny in future research reviews are
advocated to ensure robust, trustworthy findings, thereby
advancing knowledge and improving mental health care.
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