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Abstract

Background: The interrelation between COVID-19 and various cardiovascular and metabolic disorders has been a critical area
of study. There is a growing need to understand how comorbidities such as cardiovascular diseases (CVDs) and metabolic disorders
affect the risk and severity of COVID-19.

Objective: The objective of this study is to systematically analyze the association between COVID-19 and cardiovascular and
metabolic disorders. The focus is on comorbidity, examining the roles of CVDs such as embolism, thrombosis, hypertension,
and heart failure, as well as metabolic disorders such as disorders of glucose and iron metabolism.

Methods: Our study involved a systematic search in PubMed for literature published from 2000 to 2022. We established 2
databases: one for COVID-19–related articles and another for CVD-related articles, ensuring all were peer-reviewed. In terms
of data analysis, statistical methods were applied to compare the frequency and relevance of MeSH (Medical Subject Headings)
terms between the 2 databases. This involved analyzing the differences and ratios in the usage of these terms and employing
statistical tests to determine their significance in relation to key CVDs within the COVID-19 research context.

Results: The study revealed that “Cardiovascular Diseases” and “Nutritional and Metabolic Diseases” were highly relevant as
level 1 Medical Subject Headings descriptors in COVID-19 comorbidity research. Detailed analysis at level 2 and level 3 showed
“Vascular Disease” and “Heart Disease” as prominent descriptors under CVDs. Significantly, “Glucose Metabolism Disorders”
were frequently associated with COVID-19 comorbidities such as embolism, thrombosis, and heart failure. Furthermore, iron
deficiency (ID) was notably different in its occurrence between COVID-19 and CVD articles, underlining its significance in the
context of COVID-19 comorbidities. Statistical analysis underscored these differences, highlighting the importance of both
glucose and iron metabolism disorders in COVID-19 research.

Conclusions: This work lays the foundation for future research that utilizes a knowledge-based approach to elucidate the intricate
relationships between these conditions, aiming to develop more effective health care strategies and interventions in the face of
ongoing pandemic challenges.
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Introduction

The SARS-CoV-2 virus, which causes the disease COVID-19,
has impacted all areas of our lives. The scientific community
has shown an unprecedented and coordinated response to this
global pandemic [1,2]. This has led to a rapid acquisition of
new knowledge in a wide range of scientific fields and,
simultaneously, to new questions that needed to be answered
[3-5]. Some of the most important questions concern the origins
and causes leading to the severe form of COVID-19 or even
death [6,7]. One of the most important pathological aspects of
COVID-19 disease is its impact on the cardiovascular system,
more specifically cardiovascular disease (CVD) [8-11]. The
link between COVID-19 and CVD has been demonstrated and
confirmed in numerous studies. A recent scientific review article
by Vosko et al [12] offers an extensive overview of the literature
on the interaction between COVID-19 and CVDs. The authors
describe how COVID-19 can act as a yet unrecognized risk
modifier for CVD, including risk factors such as diabetes
mellitus [13] or arterial hypertension [14]. In the study by Vosko
et al [12], an increased incidence of CVD and poorer clinical
outcomes were observed in individuals with preexisting CVD,
noting conditions like myocarditis, acute coronary syndrome,
heart failure, thromboembolic complications, and arrhythmias.
Furthermore, the article by Vosko et al [12] summarizes the
mechanisms through which COVID-19 can affect CVD,
including the impact on endothelial cells and inflammation,
which can increase the risk for atherosclerosis and other
cardiovascular events. Additionally, a review study [15] was
conducted to demonstrate the connection between COVID-19
and CVD. This study provides a detailed examination of the
impact of COVID-19 on different cells in myocardial tissue and
offers an overview of the clinical manifestations of
cardiovascular involvement in the pandemic.

The most striking link between COVID-19 and CVD involves
the angiotensin-converting enzyme 2 (ACE2), which is the main
receptor for the glycoprotein membrane spike of SARS-CoV-2
[16-18]. ACE2 is bound to cell membranes in various tissues
of the vascular system [19]. Considering its importance in CVD,
a population-based study showed that higher ACE2 plasma
levels are associated with a greater risk of severe CVD [20].
COVID-19 has been found to increase the risk of cardiogenic
shock [21,22], cardiac arrhythmias [23,24], acute myocardial
injury [25,26], and sometimes sudden death in patients with
CVD [15,27,28], and at the same time, patients with CVD have
a higher risk of mortality due to COVID-19.

ACE2 is an important down-regulator of the
renin-angiotensin-aldosterone system (RAAS), which plays a
significant role in controlling arterial blood pressure [29].
Various studies have investigated the dysregulation of ACE2
in different cells of patients with CVD, indicating an
involvement of the RAAS [30,31]. For example, downregulation
was found primarily in fibroblasts and the vascular smooth
muscle of ventricles with dilated or hypertrophic
cardiomyopathy [32,33]. Conversely, an upregulation of ACE2
is mainly observed in the cardiomyocytes of patients with
ischemic and non-ischemic cardiomyopathy [32-34], It is also
noted in the lungs of patients with hypertension, cerebrovascular

disease, coronary artery disease, and other comorbidities such
as diabetes [35], which may be attributable to the joint treatment
of such comorbidities in addition to the disease itself [36].

This correlation is further supported by biochemical and genetic
analyses, as patients with heart failure show increased ACE2
expression. ACE is found in 7.6% of all heart cells, compared
to only 5.88% in healthy individuals. This is even more
pronounced in cardiomyocytes, where 9.87% of all
cardiomyocytes in heart failure express ACE2, whereas in
healthy hearts, the figure is 6.75% of cardiomyocytes. This is
reversed in arterial vascular cells: heart failure shows positive
ACE2 expression in 7.93% of vascular cells and 19.4% in
healthy individuals [37]. The invasion of SARS-CoV-2
upregulates the activity of the protease ADAM17, which in turn
downregulates ACE2 by cleaving it from the cell surface. This
process, known as “shedding,” and is very important for
understanding the cardiovascular effects of COVID-19.
Recognizing the beneficial effects of Ang-1-7 signaling, we
understand that disruption of this pathway through shedding
leads to the predominance of the RAAS, causing hypertension,
fibrotic remodeling, inflammation, and sodium retention [38,39].

Novel big data streams have created interesting opportunities
to synthesize research and identify hotspots of big data in
infectious disease epidemiology [40]. Furthermore, big data
bibliometric analyses can reveal trends and project future
developments in each scientific discipline [41-43]. Thus, based
on bibliometric analysis, a study was conducted [44], that aimed
to investigate the international scientific output on the
relationship between COVID-19 and CVDs. The findings
revealed that the United States and China are at the forefront in
both the quantity and quality of publications in this area.
Additionally, the analysis indicated that researchers have paid
special attention to cardiovascular comorbidities, outcomes,
and regenerative medicine in the context of COVID-19. Such
innovative analytical approaches, which leverage extensive big
data resources, are particularly crucial for deciphering the
complex dynamics of comorbidity patterns observed in
COVID-19 and CVDs. By integrating big data insights with
traditional epidemiological methods, our study not only
contributes to a deeper understanding of these comorbidities
but also opens new avenues for predictive analytics in health
care.

Considering all this evidence, a critical interface between the
virus and CVD has emerged, posing unique challenges to health
care systems worldwide. This study aims to unravel the complex
relationship between COVID-19 and CVD, addressing a
significant gap in our current understanding of the comorbidity
dynamics of these diseases. Utilizing a novel approach with
MeSH (Medical Subject Headings) descriptors, we
systematically analyze a wide range of literature to identify key
patterns and themes. Our study not only sheds light on the
increased risks and outcomes associated with these
comorbidities, but also paves the way for future research
methods. This manuscript is organized to first explain our
methodological approach, followed by a presentation of our
findings, a discussion of their implications, and concludes with
insights that have the potential to inform future health care
strategies and interventions.
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Methods

Overview
We conducted a search on PubMed [45] with specific search
queries on CVD and SARS-CoV-2 and limited our search to
articles published from the year 2000 onwards. Between January
1, 2000, and September 30, 2021, we collected all relevant
entries in PubMed. From these entries, we selected only
peer-reviewed scientific publications. We then created 2
databases: one for articles related to COVID-19 (the COVID-19
database) and another for articles related to CVDs (the CVD
database). The databases had a similar organization and stored
2 primary pieces of information: the PubMed identifier (PMID)
and all the MeSH descriptors provided for an article. The
following sections describe in detail the creation of the
databases, the use of the MeSH classification scheme, and the
analyses performed.

MeSH Classification
The MeSH thesaurus is a controlled and hierarchically organized
vocabulary developed and curated by the National Library of
Medicine (NLM). The assignment of MeSH descriptors to
papers by professional indexers at the NLM is highly consistent
and an efficient method for describing the main topics of an
article. Consequently, the MeSH classification system offers

an organized approach for sorting and accessing medical
knowledge. This knowledge is represented by MeSH descriptors
or MeSH terms, which are organized hierarchically to facilitate
efficient retrieval of biomedical and health-related information
from the NLM databases.

In the MeSH tree, the 16 main categories form the foundation
of its hierarchical structure. Each main category branches into
level 1 (LV1) subbranches, representing more specific aspects
of the primary category. These LV1 subbranches further divide
into level 2 (LV2) subbranches, offering an even more detailed
classification. This pattern continues, with each subsequent
level—level 3 (LV3), level 4, and so forth—delving deeper into
specialized topics, ensuring a comprehensive and nuanced
organization of medical subjects. Overall, the MeSH descriptors
are structured hierarchically across 13 levels of subbranches.
The coding of MeSH descriptors involves assigning unique
alphanumeric identifiers to each descriptor in the MeSH
database. These codes serve as precise references, facilitating
information retrieval and classification in medical and
health-related databases. Typically, MeSH codes consist of a
combination of letters and numbers. The letters often represent
the main category or aspect of health or medicine the descriptor
pertains to, while the numbers provide a unique identifier within
that category. Figure 1 presents a schematic representation of
the MeSH tree.

Figure 1. A schematic representation of the hierarchical structure within the MeSH (Medical Subject Headings) tree, illustrating the organization from
main branches to more specific sub-branches. The main branch example shown here includes categories like Anatomy [A], Diseases [C], and Chemicals
and Drugs [D]. It details the progression from a main branch (Diseases [C]) to a LV1 sub-branch (Cardiovascular Diseases [C14]), to more refined LV2
and LV3 sub-branches, which specify narrower topics such as Heart Diseases [C14.280] and further down to Hypertension [C14.907.489] within the
LV3 sub-branch. Each descriptor or topic is paired with a unique alphanumeric code that facilitates indexing and retrieval in medical databases. LV1:
level 1; LV2: level 2; LV3: level 3.

For our analysis, we developed a Python script capable of
mining relevant publications from PubMed through their API.
It extracts the MeSH descriptors associated with an article, along
with its unique PMID, and translates a given MeSH descriptor
code to the corresponding MeSH descriptor name. Since the
code of the MeSH descriptor embeds the location of the term
in the MeSH tree, our script can determine the branches from
which a MeSH descriptor originates. Our analysis primarily
focuses on the “Diseases” main branch (denoted by the letter
C), especially the “Cardiovascular Diseases” subcategory (LV1
subbranch C14; Figure 1). The hierarchical structure of the
MeSH tree enables an in-depth analysis of topics at different

levels of specificity, as illustrated in Figure 1. A more detailed
description of the algorithm is given in the subsequent sections.

Creation of the Database
Using Python and the PubMed API, Entrez, our algorithm
retrieved relevant information from the PubMed database on
COVID-19 and CVDs. We utilized MeSH descriptors as search
parameters. For the CVD database, our search query was
“Cardiovascular Diseases [MeSH Terms],” while for the
COVID-19 database, it was “COVID-19 [MeSH Terms].” Our
inclusion criteria were limited to articles from peer-reviewed
journals. Figure 2 provides a comprehensive breakdown of the
records obtained for each query, categorized by publication
type, focusing on the PMID and associated MeSH terms.
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Figure 2. Publication type prevalence in the (A) COVID-19 and (B) cardiovascular disease (CVD) data sets.

For the selected publications, we retrieved raw XML data from
PubMed and extracted 2 pieces of information from each XML
file: all MeSH descriptors and the PMID. The latter was used
to remove duplicate entries. Following this procedure, we
created 2 databases: one for the COVID-19 query and another
for the CVD query. In addition to these databases, we also
developed a graph of MeSH descriptors, which was used for
information retrieval.

Data Analysis
For each database, we performed statistical analyses using
Python [46] and its associated libraries: pandas [47] for data
manipulation, SciPy [48] for statistical calculations, and
Matplotlib [49] for data visualization.

Our initial step in the analysis involved calculating the relative
frequency of each MeSH descriptor within a specified branch
level, ranging from the “Disease” main branch to subsequent
levels such as the LV1 subbranch and beyond. We accomplished
this by tallying the occurrences of each MeSH term across all
publications in our database. After obtaining these raw counts,
we moved to a critical phase of normalization. We normalized
each count by the total number of articles within the database,
thus converting raw frequencies into proportional measures.
This adjustment allows the data to accurately reflect the
prevalence of each descriptor within the context of the overall
literature corpus.

For a more granular analysis of specific subbranches (i.e., LV1,
LV2, etc), we refined our approach. We quantified the number
of articles associated with each MeSH descriptor within the
subbranch of interest. This time, however, the normalization
process took into account the total number of articles relevant
to that particular subbranch, thus ensuring that our statistical
insights were accurately contextualized within the scope of the
subbranch’s literature.

To ascertain the relative significance of specific MeSH
descriptors within our databases, we denoted the frequency of
each MeSH term within a database (DB) as fDB (MeSH). This
measure allows us to conduct a comparative analysis to

determine the prominence of each descriptor in the COVID-19
database relative to the CVD database. We measure the disparity
in usage frequency of a MeSH term between the 2 databases by
calculating the difference , expressed as:

Δf(MeSH) = fCOVID(MeSH) – fCVD(MeSH) (1)

This difference, Δf(MeSH), provides an indication of whether
a MeSH descriptor’s presence is more pronounced
(up-regulated) or less pronounced (down-regulated) in the
COVID-19 database as compared to the CVD database. A
positive difference signifies a MeSH term’s greater relevance
to the COVID-19 corpus, while a negative value indicates lesser
importance.

However, the difference in frequencies can be misleading if the
absolute values are too large or small. This difference might
not accurately represent the term’s practical significance. To
address this, we also calculated the ratio, R(MeSH), defined as:

(2)

This ratio offers insight into the relative usage of each MeSH
descriptor. A ratio near 1 suggests comparable usage in both
databases, while ratios significantly greater or less than 1 imply
a disparity in descriptor usage.

By integrating both the difference, Δf(MeSH), and the ratio,
R(MeSH), of frequencies, we achieved a more nuanced
understanding of the role and emphasis of MeSH terms in the
COVID-19 database in contrast with the CVD database. This
dual-parameter approach allows for a more detailed and
representative interpretation of the importance of specific MeSH
descriptors in relation to the topics under investigation, such as
hypertension.

Statistical Analysis
To pinpoint the most significant MeSH topics within the context
of the 3 most prominent CVDs in relation to COVID-19, we
employed a statistical approach. We conducted a chi-square test
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of independence. This statistical test was employed to assess
whether the occurrence of specific MeSH terms shows a
significant difference when comparing the COVID-19 database
with the CVD database.

The chi-square test is particularly suited for this analysis as it
helps determine if there is a significant association between the
type of database (COVID-19 or CVD) and the frequency of
particular MeSH terms. A significant result from this test implies
that the likelihood of a MeSH term’s occurrence is dependent
on the database, indicating a specific relevance to either
COVID-19 or CVD-related articles.

Such a methodological approach allows us to identify and
highlight those MeSH terms that are disproportionately
represented in one database compared to the other, thereby
providing insights into the intersection of COVID-19 with
prominent cardiovascular conditions. This analysis not only
enhances our understanding of disease dynamics but also
potentially guides future research directions in these intersecting
medical areas.

Results

Our analysis begins with a thorough examination of the
“Disease” main branch in the MeSH tree. Specifically, our
interest lies in the corresponding MeSH descriptors found within
the LV1 subbranches. These LV1 subbranches are particularly
notable as they encompass the primary disease descriptors,
which are the fundamental classifications for various diseases.

In Figure 3, we show the frequency with which primary disease
descriptors are used in COVID-19 articles, fCOVID(MeSH).
Additionally, we analyze articles that have been assigned the
MeSH term “Comorbidity,” focusing exclusively on the
frequency of disease descriptors within this subset. We compute
the relative importance as defined in equation (1) to assess the
importance of each LV1 disease descriptor in the context of
comorbidity-related articles.

Overall, we find that all COVID-19 articles are labeled with the
LV1 disease descriptor “Infections.” The second most common
LV1 disease descriptor is “Respiratory Diseases,” which appears
in 26.7% of all articles. The third descriptor, “Pathological
Conditions, Signs and Symptoms,” was found in about 20% of
all COVID-19 articles. The MeSH term “Cardiovascular
Diseases” is the fourth most used descriptor, found in 7% of all
articles. The top ten LV1 disease descriptors found in
COVID-19 articles are shown in Figure 3A. In contrast, the
results in Figure 3B illustrate the relative importance of the
disease descriptors in a subset of COVID-19 articles related to
comorbidities, considering the baseline frequency shown in
Figure 3A. Therefore, the results in Figure 3B evaluate the
importance of each LV1 disease descriptor specifically for these
selected articles. As can be seen in Figure 3B, “Cardiovascular
Diseases” has the highest relative importance among LV1
disease descriptors in COVID-19 articles examining
comorbidity. This MeSH term has a 17.4% higher frequency
of occurrence among COVID-19 articles related to
comorbidities. It is also interesting to note that the MeSH term
“Nutritional and Metabolic Diseases” ranks second.

In continuation, we focus on the first- and second-ranked MeSH
descriptors in Figure 3B. To describe the disease terms in more
detail, we repeat the analysis at the second level of the MeSH
disease tree. Again, we separately calculated the proportion of
items with a given LV2 disease descriptor and the relative
importance of these descriptors within COVID-19 articles
related to comorbidities. The results are shown in Figure 4.

From the results shown in Figure 4A, we see that “vascular
disease“ and “Heart Disease,” which belong to “Cardiovascular
Diseases,” are among the 10 most frequently used LV2 disease
descriptors. For COVID-19 articles related to comorbidity, both
“Vascular Disease” and “Heart Disease” gain prominence
(Figure 4B). The LV1 subbranch “Cardiovascular Diseases” is
divided into 5 MeSH descriptors at the second level
(Cardiovascular Abnormalities, Cardiovascular Infections, Heart
Diseases, Pregnancy Complications, Cardiovascular and
Vascular Diseases). In contrast, the disease branch “Nutritional
and Metabolic Diseases” is divided into 2 descriptors at the
second level (Metabolic Diseases, Nutritional Disorders). This
should be considered as it could lead to a bias in the frequency
of occurrence of a descriptor caused by the number of terms
available in each subbranch. However, since we are interested
in their relative importance, we can circumvent these biases and
reveal the distributed or concentrated importance of the
descriptors. Therefore, we continue our analysis at the third
level of the MeSH tree of diseases. Since we found that at the
second level of the MeSH tree, the LV1 subbranch
“Cardiovascular Diseases” and “Nutritional and Metabolic
Diseases” have the highest relative importance, we continue
our investigation in this direction. The results are shown in
Figure 5.

Figure 5A reveals that “Disorders of Glucose Metabolism” top
the list as the most frequently mentioned LV3 MeSH term within
the COVID-19 data set, followed by “Hypertension” and
“Disease Attributes.” This figure provides an overarching view
of the commonality of these terms across all research articles.

Figure 5B delves into the LV3 MeSH descriptors that stem from
the LV2 subbranch of “Metabolic Diseases”. The data clearly
indicate that disorders of glucose and lipid metabolism are the
most recurrent topics within the LV3 subbranch, underscoring
their significance in the discourse on metabolic diseases.

Figure 5C illustrates that within the realm of CVDs, “Embolism
and Thrombosis” emerges as the most prevalent LV3 MeSH
descriptor utilized in the literature, followed by “Hypertension”
and “Heart Failure,” among others, in descending order of
frequency.

By comparing Figure 5B and 5C, we observe a less diverse
distribution of the embedded MeSH terms. The LV3 descriptors
within the CVD subbranch are more specifically clustered,
pointing to a narrower focus within CVD research in relation
to COVID-19, as opposed to the broader range of topics covered
under metabolic diseases.

Figure 5D presents a detailed ranking of LV3 MeSH descriptors
within the CVD domain as they appear in the context of
comorbidity research. Figure 5D specifically highlights which
cardiovascular conditions are most frequently discussed in
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conjunction with other health issues, shedding light on the
patterns of comorbidity that are prevalent in the current body
of literature. It allows researchers to identify which
cardiovascular disorders are most considered in studies that
address the complexities of patients presenting with multiple
concurrent health challenges. The data presented in Figure 5D
identifies “Hypertension” as the most used LV3 MeSH
descriptor within articles that discuss comorbidities, with “Heart
Failure” following in frequency. Based on these observations
from Figure 5, the subsequent analysis concentrates on 3 critical
LV3 MeSH terms: “Hypertension,” “Heart Failure,” and
“Embolism and Thrombosis.”

In our analysis of the COVID-19 and CVD databases, we use
the frequency of LV3 MeSH descriptors to represent the focus

of research. We started by examining “Embolism and
Thrombosis,” a common CVD descriptor (Figure 5C). Our
results (Figure 6A) indicate that “Embolism and Thrombosis”
is most frequently associated with “Disorders of Glucose
Metabolism” in the COVID-19 database. “Disorders of Iron
Metabolism” (with an increase of Δf[MeSH]=0.16% and a ratio
of R[MeSH]=5.64) and “Disorders of Acid-Base Balance” are
also significant but less frequent. “Disorders of Iron
Metabolism” have seen the largest increase, ranking it at the
top in the COVID-19 database. “Disorders of Glucose
Metabolism” follow (with an increase of Δf[MeSH]=1.14% and
a ratio of R[MeSH]=2.46), and “Disorders of Acid-Base
Balance” come in third (with an increase of Δf[MeSH]=0.06%
and a ratio of R[MeSH]=1.47).

Figure 3. Comparative analysis of level 1 (LV1) subbranch disease descriptor frequencies in COVID-19–related articles. Panel A presents the distribution
within the COVID-19 data set, while Panel B focuses on the subset of COVID-19 articles tagged with the “Comorbidity” MeSH (Medical Subject
Headings) term. Each bar’s color corresponds to a specific disease descriptor and maintains consistency throughout the manuscript.

Figure 4. Most important level 2 (LV2) disease descriptor. Results are computed for (A) the entire COVID-19 data set and (B) for the subset of
COVID-19 articles related to comorbidities. Each bar’s color corresponds to a specific disease descriptor, as defined in Figure 3. MeSH: Medical Subject
Headings.
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Figure 5. Ten most important level 3 (LV3) disease descriptors for COVID-19–related articles. Results are computed for (A) all LV3 disease descriptors,
(B) only for LV3 disease descriptors originating from the “Nutritional and Metabolic Diseases,” (C) only for the LV3 “Cardiovascular Diseases” branch,
and (D) only for the LV3 “Cardiovascular Diseases” branch obtained for the COVID-19 sub-set of articles considering comorbidities. Each bar’s color
corresponds to a specific disease descriptor, as defined in Figure 3. MeSH: Medical Subject Headings.
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Figure 6. A comprehensive comparison of the absolute and relative changes in the frequency of level 3 (LV3) MeSH (Medical Subject Headings)
descriptors in the COVID-19 database relative to the cardiovascular disease (CVD) database, focusing on 3 specific cardiovascular diseases: Embolism
and Thrombosis (panels A and B), Hypertension (panels C and D), and Heart Failure (panels E and F). The figure displays the top 15 MeSH descriptors
for each condition. Notably, the bars corresponding to “Iron Metabolism Disorders,” “Glucose Metabolic Disorders,” “Acid-Base Imbalance,” and
“Disorders of Lipid Metabolism” are distinctly color-coded in black, red, green, and orange, respectively, allowing for easy identification and comparison
of these key terms across different cardiovascular conditions.

For high blood pressure (“Hypertension”), the MeSH term
“Disorders of Glucose Metabolism” is most significant in
frequency difference, followed by “Acid-Base Imbalance” and
“Iron Metabolism Disorders” (Figure 6C). Interestingly, “Iron
Metabolism Disorders” show a smaller overall frequency
difference (Δf[MeSH]=0.11%) but a higher ratio
(R[MeSH]=5.90), indicating they are used more frequently in
COVID-19 research compared to CVD research. “Disorders of
Glucose Metabolism” take the second spot (with a substantial

increase of Δf[MeSH]=26.47% and a ratio of R[MeSH]=3.66),
and “Acid-Base Imbalance” is third (Δf[MeSH]=0.21% and
R[MeSH]=2.10) based on their relative frequencies.

In the third part of our analysis, we focused on heart failure,
with the findings illustrated in Figure 6E and 6F. Among the
various MeSH terms, “Glucose Metabolic Disorders” emerged
as the second most frequent term in the comparison between
the COVID-19 and CVD databases. While “Iron Metabolic
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Disorders” and “Acid-Base Imbalance” are also relevant, they
are positioned at 17th, explaining their absence from the figure
due to their lower frequency. Notably, “Iron Metabolism
Disorders” feature more prominently in the COVID-19 database
than in the CVD database, ranking tenth in frequency difference.
Significantly, as Figure 6F reveals, “Iron Metabolism Disorders”
rank second in relative importance among all LV3 MeSH
descriptors in the COVID-19 database, compared to the CVD
database. “Disorders of Lipid Metabolism” also show
considerable relevance, ranking third, whereas “Disorders of
Glucose Metabolism” are positioned seventh. Despite its lower
frequency, “Acid-Base Imbalance” maintains a high relative
importance, coming in at 17th. These results underscore the
shifted focus in medical research on specific metabolic disorders

in the context of COVID-19, particularly in relation to heart
failure.

To build upon these findings, we applied the chi-square test to
validate whether the observed differences in LV3 MeSH
descriptor frequencies between COVID-19 and CVD databases
are statistically significant. This test helped us determine if the
occurrences of 4 specific MeSH terms—“Disorders of Glucose
Metabolism,” “Iron Metabolism Disorders,” “Acid-Base
Imbalance,” and “Disorders of Lipid Metabolism”—in the
COVID-19 database are significantly different from their
occurrences in the CVD database. We also employed multiple
P values to strengthen our assessment of significance. The
findings are detailed in Table 1.

Table 1. Statistical significance of selected MeSH (Medical Subject Headings) terms in 3 subsets of COVID-19 articles related to cardiovascular

diseases (CVDs)a.

Heart failure, P valueHypertension, P valueEmbolism and thrombosis, P valueLV3b MeSH terms

<.05<.001<.001Glucose Metabolism Disorders

.116.525<.01Iron Metabolism Disorders

.585.42.103Acid-Base Imbalance

.05.53.94Lipid Metabolism Disorders

aThe P values signify whether the appearance of a MeSH term in the COVID-19 database is significantly different compared to the appearance in the
CVD database.
bLV3: level 3.

In the context of “Embolism and Thrombosis,” our analysis
reveals that the frequencies of both glucose and iron metabolism
disorders show a statistically significant difference when
comparing the COVID-19 and CVD databases across all 3
subdata sets.

For “Hypertension,” the scenario is slightly different. Here, the
incidence of glucose metabolism disorders stands out as the
only descriptor with a significant difference in frequency
between the COVID-19 and CVD databases.

Lastly, regarding “Heart Failure,” we again note a significant
difference for glucose metabolism disorders, although with a P
value of <.05. This pattern highlights a specific focus or
heightened research interest in glucose metabolism disorders
within the context of COVID-19, particularly when comorbid
with CVDs such as embolism, thrombosis, hypertension, and
heart failure.

Discussion

Principal Results
The aim of this study was to analyze all available peer-reviewed
articles from the PubMed database to identify the most relevant
topics regarding the relationship among COVID-19, CVDs, and
comorbidity. For this purpose, we used the MeSH term
descriptors, which are the most important topics covered in an
article in a standardized form. In COVID-19–related research
that considers comorbidity, we found the most relevant MeSH
descriptors are CVDs and nutritional and metabolic diseases.
Since both terms are quite broad, we continued our analysis one
branch deeper in the MeSH tree and found that the

corresponding significant topics are related to metabolic
disorders, vascular diseases, and heart diseases. Advancing one
level deeper in the MeSH tree, we investigated the meaning of
more specific terms related to CVD and metabolic disease. We
determined that the most significant CVDs related to
comorbidity and COVID-19 are embolism and thrombosis,
hypertension, and heart failure. Given the prominence of
metabolic disorders in our analysis, we also explored which
specific metabolic disorders were most significant and found
that glucose metabolism disorders were the most notable.
However, we also noted a significantly increased frequency of
the term iron metabolism disorders in COVID-19 articles related
to embolism and thrombosis compared to CVD articles related
to embolism and thrombosis.

Limitations
Using the methodology presented here, we were able to identify
the most important issues relevant to comorbidities and
COVID-19. Although the methodology can be applied to any
major topic and its corresponding subtopic, it has some
limitations. The main limitation is its inability to find
relationships between themes. This was addressed by selecting
relevant subtopics through iteratively evaluating the results at
each level of the MeSH tree. However, in future studies, we
intend to incorporate a knowledge graph-based approach by
mapping relationships between topics. This would in turn allow
us to consider not only the frequency of the occurrence of a
topic but also to evaluate the co-occurrence of topics.
Consequently, this would allow us to automatically find highly
related pairs of topics and eventually create a more detailed and
complex description of the item database under consideration.
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Comparison With Prior Work
In relation to COVID-19, individuals with certain comorbidities
have been shown to have a higher likelihood of developing a
severe form of this disease and have a higher mortality rate.
COVID-19 has been associated with an increased prevalence
of CVD, suggesting that CVD may be a risk factor for the
disease [50]. According to mortality data from China’s National
Health Commission, 17% and 35% of individuals with
COVID-19 had a history of coronary heart disease and
hypertension, respectively [51]. Li et al [52] showed that the
presence of cardio-cerebrovascular disease, diabetes, and
hypertension increased the risk of severe COVID-19 by
threefold, twofold, and twofold, respectively. A larger study
from the Chinese Center for Disease Control and Prevention,
which examined the clinical outcomes of 44,672 confirmed
COVID-19 cases, found that the case fatality rate was 2.3% in
the entire cohort, but was significantly higher (6%, 7.3%, and
10.5%, respectively) in individuals with hypertension, diabetes,
and CVD [53]. Several smaller cohort studies have also
presented similar reports, suggesting a higher risk of an adverse
episode in patients with COVID-19 with underlying CVD
[54-56]. Cardiac injury (characterized by elevated troponin
levels), myocarditis, and acute respiratory distress syndrome
have been reported as strong, independent risk factors associated
with mortality in patients with COVID-19 [57]. According to
the Pneumonitis Diagnosis and Treatment Program for Novel
Coronavirus Infections, the likelihood of COVID-19 infection
is higher in older people (>60 years) with pre-existing
conditions, especially in patients with hypertension, coronary
heart disease, or diabetes [51]. Thus, advanced age, male gender,
and the presence of preexisting conditions are the main risk
factors for COVID-19 mortality [57].

Given the increasing evidence of iron status’ importance for
immunity, it is not surprising that biomarkers of iron metabolism
have been investigated in several studies on patients with
COVID-19 [58]. COVID-19 is also characterized by a cytokine
storm, leading to increased production of hepcidin, the primary
hormone regulating iron metabolism, in response to heightened
proinflammatory cytokines [59]. Patients with low serum iron
status were likely to suffer from severe conditions and multiple
organ damage in COVID-19 [60]. In addition, both iron
deficiency (ID) and iron overload are commonly observed in a
variety of CVDs and contribute to the onset and progression of
these diseases. One of the devastating consequences of iron
overload is the induction of ferroptosis, a newly defined form
of regulated cell death that severely impairs cardiac function
through ferroptotic cell death in cardiomyocytes [60]. Our results
show that the term iron metabolism disorder occurs significantly
more frequently in COVID-19 articles related to heart failure
than in CVD articles on the same topic. Interestingly, ID is
frequently observed in patients with heart failure [61-63].
Furthermore, ID correlates with an increased incidence of right
ventricular failure in patients with acute HF [64,65]. ID also
contributes to impaired functioning of the respiratory chain
complexes (complex I to V), leading to altered myocardial
metabolism, ROS formation, and ultimately advanced HF.
Impaired mitochondrial function is one of the underlying
mechanisms of ID-induced HF [66,67].

Clinical Implications of Our Findings
Our research has highlighted the critical intersection between
COVID-19 and severe cardiovascular conditions, notably
embolism and thrombosis. The urgency of identifying and
managing these conditions is of paramount importance, as they
present immediate life-threatening risks and their symptoms
often overlap with those of COVID-19, especially pulmonary
thromboembolism [68]. Our findings underscore the vital
importance of vigilant monitoring for individuals affected by
COVID-19 to prevent these severe outcomes.

A primary tool in this monitoring process is the serial
measurement of D-dimer levels, which has been shown to
strongly correlate with an increased risk of disease progression,
critical illness, and mortality. D-dimer levels also serve as a
reliable predictor of venous thromboembolism when measured
at admission, and levels at discharge are associated with a higher
1-year mortality risk [69]. Current guidelines recommend
thromboprophylaxis for all hospitalized patients with
COVID-19, except those with an increased risk of bleeding
[68]. While further research is necessary to determine the
optimal anticoagulation dosage, standard doses of LMWH are
generally recommended for most patients, with intermediate
doses for those who are critically ill or obese [70]. Routine
screening for deep vein thrombosis with Doppler
ultrasonography is not currently advised for thromboembolism
screening, as rapidly increasing D-dimer levels and worsening
oxygenation have been found to be more successful [71].

We have also uncovered a significant correlation between
COVID-19 and glucose metabolism disorders. Increasing
evidence suggests a bidirectional relationship between diabetes
and SARS-CoV-2 infection. This indicates that patients with
diabetes are at a higher risk of developing a severe form of
COVID-19, while individuals with COVID-19 are more likely
to develop metabolic disorders. Shared pathogenic mechanisms,
such as general inflammation, a pro-thrombotic state, and
atherosclerosis, likely contribute to this association [72].

Analysis of the GTEx database revealed higher ACE2
expression in the pancreas than in the lungs. Liu et al. analyzed
pancreatic injury following SARS-CoV-2 infection and found
that such injuries predominantly occurred in patients with severe
COVID-19 [73]. Therefore, special attention is warranted for
patients with metabolic disorders, including priority for
vaccination and rigorous monitoring in the event of infection,
with a low threshold for intensifying care. Preventive measures
for detecting metabolic disorders should be implemented in
individuals after a severe SARS-CoV-2 infection. This includes
monitoring blood glucose levels, lipids, and biochemical markers
for pancreatic injury.

Additionally, our results underscore the importance of iron
metabolism, a factor currently underrepresented in clinical
practice, underscoring the need for further trials to integrate it
into care for patients with COVID-19. Research indicates that
ferritin levels can be used to estimate disease severity, providing
useful cutoff values. These could complement other initial
screening methods in predicting the necessary level and intensity
of patient care [74]. There is also an underexplored therapeutic
potential in manipulating iron levels, either by using chelators
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like deferoxamine to lower them or through iron
supplementation to raise them in patients with inappropriate
values. Before this approach can be widely adopted in practice,
further research is essential to determine the optimal levels.
Reducing iron in patients with highly active hepcidin due to
inflammation could impede recovery [75]. Nonetheless, the
importance of iron metabolism extends beyond coagulation
disorders to metabolic disorders, with iron overload contributing
to the development of these diseases [76,77].

In summary, the insights from our study have critical
implications for clinical practice. By identifying key biomarkers
and conditions associated with severe COVID-19 outcomes,
we provide a foundation for improving patient monitoring,
treatment strategies, and, ultimately, patient outcomes during
the pandemic. Our findings urge health care professionals to
incorporate these insights into their clinical practice, promoting
a proactive and informed approach to managing COVID-19 and
its cardiovascular complications.

Conclusions
Our study represents a crucial step toward understanding the
complex interplay between COVID-19, CVD, and metabolic
disorders, highlighting in particular the role of embolism,
thrombosis, and iron metabolism disorders. The method we
adopted, using MeSH term descriptors to dissect the different
levels of related topics, has furnished a comprehensive overview

of the main comorbidities influencing COVID-19 outcomes.
Importantly, this approach can be adapted and applied to other
important health topics and their subcategories, despite its
current limitation in directly mapping topic relationships. Future
research efforts should aim to incorporate a knowledge
graph–based methodology, enabling a more detailed analysis
of topic co-occurrences and their relationships. Such
advancements are essential for deciphering complex disease
dynamics, particularly in the context of emerging infectious
diseases such as COVID-19.

The knowledge gained from this study is invaluable for the
development of more effective clinical practices and public
health strategies. By identifying key comorbidities and their
impact on COVID-19, we are better positioned to tailor
treatments and interventions for patients affected by these
conditions. Additionally, understanding the role of specific
metabolic disorders, such as those affecting glucose and iron
metabolism, opens up potential therapeutic targets and
preventive measures. In managing the current pandemic and
preparing for future viral outbreaks, the findings from this study
are crucial in guiding medical advancements, improving patient
outcomes, and increasing the resilience of the health care system.
This work not only contributes to our immediate fight against
COVID-19 but also creates a foundation for more informed and
effective responses to similar health crises in the future.
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