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Abstract

Background: Prehospital telemedicine triage systems combined with machine learning (ML) methods have the potential to
improve triage accuracy and safely redirect low-acuity patients from attending the emergency department. However, research in
prehospital settings is limited but needed; emergency department overcrowding and adverse patient outcomes are increasingly
common.

Objective: In this scoping review, we sought to characterize the existing methods for ML-enhanced telemedicine emergency
triage. In order to support future research, we aimed to delineate what data sources, predictors, labels, ML models, and performance
metrics were used, and in which telemedicine triage systems these methods were applied.

Methods: A scoping review was conducted, querying multiple databases (MEDLINE, PubMed, Scopus, and IEEE Xplore)
through February 24, 2023, to identify potential ML -enhanced methods, and for those eligible, relevant study characteristicswere
extracted, including prehospital triage setting, types of predictors, ground truth labeling method, ML models used, and performance
metrics. Inclusion criteriawere restricted to the triage of emergency telemedicine servicesusing ML methods on an undifferentiated
(disease nonspecific) population. Only primary research studies in English were considered. Furthermore, only those studies
using data collected remotely (as opposed to derived from physical assessments) wereincluded. In order to limit bias, we exclusively
included articles identified through our predefined search criteria and had 3 researchers (DR, JS, and KS) independently screen
the resulting studies. We conducted a narrative synthesis of findings to establish a knowledge base in this domain and identify
potential gaps to be addressed in forthcoming ML -enhanced methods.

Results: A total of 165 unique records were screened for eligibility and 15 were included in the review. Most studies applied
ML methods during emergency medical dispatch (7/15, 47%) or used chatbot applications (5/15, 33%). Patient demographics
and health status variables were the most common predictors, with a notable absence of socia variables. Frequently used ML
models included support vector machines and tree-based methods. ML-enhanced models typically outperformed conventional
triage agorithms, and we found a wide range of methods used to establish ground truth labels.
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Conclusions: Thisscoping review observed heterogeneity in dataset size, predictors, clinical setting (triage process), and reported
performance metrics. Standard structured predictors, including age, sex, and comorbidities, across articles suggest theimportance
of these inputs; however, there was a notable absence of other potentially useful data, including medications, social variables,
and health system exposure. Ground truth labeling practices should be reported in astandard fashion asthe true model performance
hinges on theselabels. Thisreview callsfor future work to form a standardized framework, thereby supporting consistent reporting

and performance comparisons across ML -enhanced prehospital triage systems.

(Interact J Med Res 2024;13:€56729) doi: 10.2196/56729
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Introduction

Surging emergency department (ED) visitslead to overcrowding
in the ED setting, contributing to adverse patient outcomes,
staffing challenges, and health system constraints[1]. Challenges
in maintaining ED capacity are estimated to cost millions in
health care expenditures [2]. Various interventions have been
proposed to improve ED conditions, and prehospital
telemedicine triage systems are among the most promising,
having the potential to prioritize patients based on their
likelihood of requiring emergency versus community-based
care[3], potentially alleviating theinflux of low-acuity patients
that would otherwise be managed in the high-cogt,
resource-intensive ED setting [4,5]. Such systems, including
emergency medical dispatch, nurse-staffed telephonelines, and
symptom checkers (chatbots), share the common goal to triage
patients based on the information that is provided at the first
contact for an urgent health concern. These prehospital services
often do not include physician assessments, instead using either
rule-based algorithms or health personnel for patient triage [6].
In telemedicine, defined as the delivery of health care services
at a distance [7], the inherent scarcity of objective or physical
measures such as vital signs has spurred effortsto improve risk
prediction using machine learning (ML) models applied to a
wide array of information sources such asfreetext from patient
intake calls and vital symptoms monitoring [6,8].

Machine learning has been recognized as one option for
improving the accuracy of prehospital telemedicine triage
systems. To date, ML has commonly been applied in areas of
precision medicine (ie, prediction of the success of treatment
regimens), though it is rapidly expanding into diverse sectors
of health care[9]. In the ED setting, ML models show promise
in their ability to accurately predict inpatient admissions and
sepsis [10,11]. Incorporating contextual information into ML
models can improve prediction of prehospital emergency
services [5]. However, there is a lack of understanding and
evidence-based practices regarding how ML can optimally be
implemented in remote prehospital settings as compared with
more data-rich, in-person settings such asthe ED [5,10,11].

In supervised learning, ML modelslearn from label ed data that
serve asthe “ground truth.” Ground truth refersto the nature of
the problem that is the target of the ML model; in the context
of prehospital triage, ground truth isthe” correct” triage outcome
of a patient. The exact process for defining ground truth is
complex and substantially varies across studies. Unlike clear
binary ground truths, such as“alive’ or “deceased,” determining
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the “correct” triage outcome is more complex, potentialy
involving subsegquent chart reviews or nuanced clinician
assessments, thus introducing ambiguity.

A review of the predictors, labels, and models used in
prehospital triage systems needs to establish an evidence base
for efficient ML methods of triaging patients and identification
of gaps not included in the existing models. Without a review,
it is unclear whether existing methods and models may
generalize to certain settings or be free from biases[12]. Thus,
we conducted a scoping review to support our understanding
of ML applications in remote prehospital settings. Scoping
reviews are useful in the research fields of social sciences and
health care, especially when a topic has not yet been
comprehensively reviewed or exhibits a large, complex, or
heterogeneous nature not amenable to a more thorough
systematic review [13]. Whilethere have been literature reviews
outlining ML methodsin emergency settings[14-16], no specific
review touches on prehospital telemedicine triage services.
Related reviews such as Sanchez-Salmeron et a [15] focused
on in-person triage, as opposed to prehospital and remotetriage.
Through this scoping review, we aim to explore what evidence
exists to compare the effectiveness of ML-enabled strategies
with conventional triage methods in improving outcomes for
patients seeking care through telemedicine services. We also
aim to explore (1) what data sources and approaches are used
for extracting meaningful predictorsand labels, (2) what models
and performance metrics are used, and (3) the processes of
telemedicine triage systems where ML has been applied.

Methods

Search Strategy

Elements of the PRISMA-ScR (Preferred Reporting Items for
Systematic reviews and Meta-Analyses extension for Scoping
Reviews) protocol [17] and the Population, Intervention,
Comparison, and Outcome (PICO) framework [18,19] were
used to guide our search strategy. The searchincluded al articles
published prior to February 24, 2023. Methodological
frameworks for scoping reviews from Arksey and O’ Malley
[20] and Levac et a [21] were followed.

The search strategy began with initial searches conducted
through MEDLINE to extract terms based on article titles and
abstracts. Keywords and expressionsincluded both regular and
Medical Subject Headings (MeSH) terms. Thefollowing search
expression was developed and applied: “Telephone/ or
telephonemp. OR phonemp. OR telemedicinemp. OR
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Telemedicine/ OR Emergency Medical Service Communication
Systems/ OR Emergency Medical Dispatch/ OR dispatch.mp.
OR hotlinemp. OR Hotlines OR prehospital.mp. OR
pre-hospital.mp. OR remote consultation.mp. OR Remote
Consultation/” AND “machine learning.mp. OR Artificial
Intelligence/ OR Machine Leaning/ OR artificia
intelligence.mp. OR natural language processing.mp. OR
Natural Language Processing/ OR chatbot.mp.” AND “triage/
OR triage.mp”

Our search followed the 3 phases listed from the PRISMA-ScR
protocol: identification, screening, and inclusion [17]
(Multimedia Appendix 1). Using the search expression, articles
were retrieved from the following databases: MEDLINE,
PubMed, Scopus, and IEEE Xplore. These databases were
selected for this review due to their ability to cover the most
scientific information in fields such as telemedicine and health
care decision-making while also being previously used by
several health and technology-related reviews [15,16,22]. In
order to limit bias and ensure reproducibility, we elected to
exclusively include articles identified through the predefined
search strategy.

Table 1. Inclusion and exclusion criteria of screening strategy.

Raff et al

Article Selection

All identified records were combined (n=296) and duplicates
(n=131) removed resulting in 165 recordsremaining. Theresults
of the initia search after duplicate removal are found in
Multimedia Appendix 2. Articles needed to meet a set of
inclusion and exclusion criteria(Table 1), which were devel oped
to ensure that articles were relevant to prehospital telemedicine
triage, conducted remotely as opposed to in the ED. During an
initial piloting phase, 3 researchers (DR, KS, and MY) piloted
these criteriato ensure consistency acrossthem. Each researcher
independently screened each title based on the inclusion and
exclusion criteria, with discrepancies reaching consensus
through discussion, which resulted in 32 records remaining
(n=133 excluded). Articlesthat passed the title screening were
then screened for relevant abstracts following asimilar process
resulting in 15 records remaining (n=17 excluded). The
remaining articles were then read in their entirety and all 15
records were deemed eligible and included in the results of the
review. Of the articles excluded, most were excluded for the
provision of in-person care (as opposed to data collected
remotely), were not primary research studies, or were not for
general purpose triage (eg, stroke-specific triage).

PICO%other element  INclusion criteria Exclusion criteria
Population Undifferentiated popul ation seeking emergency services(includ-  Specialty-specific population (eg, stroke, heart disease).
ing COVID-19 assessments).
Concept Triage of emergency telemedicine services enhanced by any ~ Only conventional triage methods used or ML models that
MLP method that includes only data collected remotely. include predictors derived from physical assessments (eg,
vital signs). Internet of medical things devices requiring
physical or in-person assessmentswere excluded (eg, home
blood pressure equipment).
Context Provision of emergency telemedicine services, including web-  Provision of in-person emergency care.
based symptom checkers, clinician-staffed telephone line, or
emergency medical dispatch.
Evidence type Primary research studies. Literature reviews, protocols, guidelines, |etters, gray liter-
ature, and qualitative studies excluded.
Language Studies published in English. Studies in languages beyond English.
Date Published before February 24, 2023. Published on or after February 24, 2023.

ap1Co: Population, Intervention, Comparison, and Outcome.
BML: machine learning.

Data Extraction

We extracted data from the included articles with an aim to
understand how research in this domain is conducted. A data
extraction tool was developed using the JBI Manua for
Evidence Synthesistemplate [23] with a pilot step on 2 sources
conducted by 2 researchers (JS and DR). The data of interest
fell in four main categories:

1. Study characteristics: Author, year of publication, country
of origin, the am of the study, the result of the study,
population assessed, dataset source, dataset size (the number
of patient records), prospective/retrospective/deployed, and
triage process.

https://www.i-jmr.org/2024/1/e56729

2. ML mode predictorsand labels: Number of predictorsand
data types, methods for determining ground truth |abels.

3. ML techniques and corresponding performance metrics:

4. Comparators, dataset partitions, data-preprocessing
methods, performance metrics and values, and data quality
analysis approaches.

5. Resourcesfor future ML model development: Source code
availability and software packages used.

This list of extraction items was supported by prior literature
that involved emergency care—related triage [22,24] and was
refined based on discussions among the authors. For each of
the eligible articles included in this review, 1 author (JS)
extracted and tabulated the relevant information, and the
information was validated by another author (DR) with
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discrepancies further assessed by a last author (KS). All
extracted information was analyzed by the authors to derive a
narrative synthesis of the findings. Aligned with the scoping
review methodology, articles were not assessed for quality or
risk of biasand no statistical analyseswere conducted. The data
extraction tool and raw data extracted are available in
Multimedia Appendix 2.

Triage Process

Wefound that the studies spanned 3 prehospital triage processes:
emergency dispatch, telephone lines, and chatbot applications.
When di stingui shing between emergency dispatch and tel ephone
line systems, context of the call and nature of interaction were
the 2 main points of consideration. Emergency dispatch calls
(eg, 9-1-1) arereceived and handled by trained emergency staff
focused on collecting critical information on the emergency,
such asthe nature of theincident, location, and immediate risks.
The dispatcher then makes decisions based on thisinformation
to allocate appropriate resources, such as ambulances or first
responders. Conversely, telephone lines such as nurse-led
helplines or crisishotlines are designed to offer support, advice,
and clinical guidance to individuals seeking health care
information or experiencing a crisis [25]. The interaction is
often more conversational and supportive, resulting in a more
complex triage process that depends on the nature of the call,
the expertise of the health care professionalsinvolved, and the
available resources or referrals.

Predictors

We classified the predictor variables into 4 domains
(demographic factors, operational characteristics, clinical
factors, and unstructured data such as free text) and extracted
how these data were handled in the models. These domains
were determined based on the prehospital triage field and
iteratively refined as data were extracted.

Ground Truth Labels

Variability existed in how ground truth labeling methods were
coded for ML processing dueto diverse sources of training data
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and annotation methods. In our classification of the observed
ground truth methods, we first identified whether the label was
derived from (1) the usual clinical process, that is, subsequent
clinician triage, or (2) outside of the usua clinical process, that
is, post hoc. Within category 1, we further identified whether
(1A) remote-only data were used, or (1B) physical, in-person
datawere used. Within category 2, we further classified whether
(2A) labels were automatically derived or (2B) labels were
manually derived. Automatically (systematically) derived labels
are the results of a uniform and scalable application of a
|abel-deriving algorithm across a dataset.

Results

Char acteristics of the Studies

Figure 1 shows a summary of the search protocol phases
followed for thisreview using the PRISMA-ScR flow diagram.
Of the 15 unique studies included, 33% (5/15) of the articles
were published in 2022, 26% (4/15) in 2021, 20% (3/15) in
2020, and the remaining 20% (3/15) of the articles between
2014 and 2019. The most frequently occurring country of
publication was the United States (4/15, 27%), followed by
Japan (2/15, 13%), with the remaining being published in 9
distinct countries (Table 2).

Most studies (11/15, 73%) were retrospective, using historical
patient outcomes to assess the performance of ML modelsin
triage prediction. Among the retrospective articles, 2 reported
a combination of retrospective results and the performance of
deployed models. Of the other 4 nonretrospective articles, 13%
(2/15) focused solely on deployed models and 13% (2/15)
carried out a prospective study to explore the applications of
ML triage in a specific health care setting.

Moreover, 47% (7/15) of articlesinvestigated the use of ML in
emergency dispatch calls, 33% (5/15) of articles focused on
chatbot-style applicationsthat could be accessed viatheinternet
or within the ED, and 20% (3/15) of articles investigated ML
in telephone lines, including 13% (2/15) nurse-led phone lines
and 7% (1/15) crisis hotline.
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Figurel. PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) flow diagram.
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Table 2. List of 15 studiesincluded in the review and their characteristics.
Author (year) Study setting (country) Dataset size® Labelsincluded Aim Triage phase
Anthony et a (2021) South Africa 93 3 binary Classify critical conditionsin  Dispatch
[26] emergency calls
Ceklic et a (2022) Austraia 11,971 1 binary Classify severity of trafficcrash  Dispatch
[27] incidentsin dispatch calls
Chinet a (2022) [28] Taiwan 114 1 binary Classify severity of trafficcrash  Dispatch
incidentsin dispatch calls
Cotteeta (2022) [29] Germany 385 1 multiclass Classify triage decisionsusing  Chatbot
a symptom assessment app
Ferri et al (2021) [30] Spain 1,244,624 3 binary and multi- Classify emergency incidents  Dispatch
class in dispatch calls
Gatto et al (2022) [31] United States 574 1 binary Classify severity in patient’'s  Chatbot
text-based inquiries
Inokuchi et a (2022)  Japan 15,442 1 binary Identify undertriage in prehos-  Nurse-led phoneline
[32] pital telephone triage
Lai et a (2020) [33]  United States _b — Classify triage for prehospital  Chatbot
COVID-19 cases
Marchiori etal (2021) Switzerland >900,000° 1 multiclass Evaluate Al%-powered chatbot  Chatbot
(29] for symptom-checker triage
symp ag
Morse et a (2020) United States 26,646 — Evauate Al-powered chatbot ~ Chatbot
[34] for symptom-checker triage
Pacula et a (2014) United States 427 2 multiclass Classify triageand distressindi-  Crisis hotline
[35] catorsin crisis hotline chats
Spangler et al (2019)  Sweden 68,668 1 continuous Validate MLS-generated risk ~ Dispatch (operated
(3l scores for prehospital care by nurses)
Tollinton et a (2020)  United Kingdom 1,188,509 1 binary Classify triage of unconscious Dispatch
[5] patients in dispatch calls
Veladas et al (2021)  Portugal 269,669 1 multiclass Classify clinical pathwaysfrom Nurse-led phoneline
[36] text data
Yunoki et al (2014) Japan 61,927 1 multiclass Classify triage categoriesfrom Dispatch

(4

phone call data

@\umber of patient records included.

PDataset size used for model devel opment was not stated for this study or information on labels was not included.

“The study stated that “more than 900,000 case records” were included.
Al artificial intelligence.
eML: machine learning.

The size of the dataset used across studies varied considerably,
with a median sample size of 21,044 observations. The largest
dataset comprised 1,224,624 anonymized patient records [30]
and the smallest dataset included 93 call transcripts[28]. Distinct
methods were reported to handle missing data; for example,
Ferri et a [30] excluded al call records with missing values,
while Inokuchi et al [32] performed imputation to account for
missing data (3918/19,114, 20.5% of cases had missing data)
using the k-nearest neighbors (k-NN) algorithm.

Predictors

Severd articlesused predictorsthat spanned multiple categories,
as exemplified by Ferri et a [30], who extracted patient
demographic data (age, gender), operational data (date, caller
type), and unstructured data (clinical free-text observations). In
contrast, Chin et a [28] used unstructured data (dispatch call

https://www.i-jmr.org/2024/1/e56729
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transcript) as the only data source in their ML model
development, citing the “higher expressiveness of patient
condition than structured data.” The frequency of occurrence
for each of these domainsis shown in Figure 2.

The mapping and processing techniques varied across datatypes.
Most commonly, many input variables were one-hot encoded,
such as age groupings, sex, day of week, clinical indicators
(symptoms, comorbidities), and question-answer pairs. Notably,
distance to ED was one of the few continuous predictors used
[3]. For unstructured data, various natural language processing
(NLP) techniques were employed to transform these data to
useful inputs, such as bag-of-words methods or text
vectorization, which are strategies to transform text datainto a
numerical representation that can be processed by ML models
(see Multimedia Appendix 3 for more information).
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Figure 2. Percentage of predictor typesincluded in the studies. ED: emergency department; Q& A: question and answer.
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Data Labeling: Determining Ground Truth

Two studies (2/15, 13%) [33,34] did not provide sufficient
information to determine their ground truth labeling method.
Most of the ground truth methods (5/15, 33%) used physical
assessments from the usual clinical process; however, within
this group input data were from 3 different types of providers
(nurses, physicians, and ambulance crew) with each employing
adifferent triage or categorization system (Figure 3) [25]. This
results in variability as similar information is outputted with
different labels, which limits comparability (eg, patient

conveyance [5] or “gold standard” ED triage protocols [4]).
Notably, the 3 (20%) studies[3,27,30] that used automatic post
hoc (2A) methods had larger sample sizes (mean 4,32,792
observations; range 15,550-1,244,624) versus studies[26,31,35]
using manual (2B) methods (mean 364 observations; range
93-573). Acrossthe 4 methods, 6 studies (40%) predicted labels
that were binary and based on symptom or condition severity
(eg, life-threatening [30], severe trauma [28]), while 7 studies
(47%) predicted multiclasslabels (eg, 1 of 53 clinical pathways
[36]).

Figure3. Label and ground truth methodol ogies by annotation method. *Marchiori et a used remote physician triage as ground truth for model training
but manually derived labels for model testing. To ensure consistency in article classification, we have categorized all articles based on the ground truth
method for model training. ED: emergency department; EMCI: emergency medical call incident; EMT: emergency medical technician; L&S: lights

and sirens; MTS: Manchester Triage System.
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Interrater Reliability

Methodsto enhanceinterrater reliability wererarely employed,
in contrast to published guidelines concerning manual data
labeling [37]. Marchiori et a [25] did so by ensuring the
adequate training of data collectors by selecting “only records
generated by top-ranked doctors (based on years of experience
and internal audits).” In the study by Gatto et a [31], data
annotators “invested significant time to educate themselves on
the symptoms” observed in the dataset; however, it was noted
“that the use of nonmedical professionals limited the degree of
granularity with which the dataset was labelled.” Pacula et al
[35] used consensus among 3 evaluators when labeling data
and measured the interannotator agreement using the Fleiss
kappa statistic to confirm good agreement.

Raff et al

ML Algorithms

Most studies applied more than 1 ML technique to method
development (11/15, 73%). However, 2 studies (13%) did not
disclosethe ML algorithm used in their triage prediction model.
Three (20%) studies published the source code for various stages
of their ML model development and validation (Table 3).

Overdll, the most popular ML algorithm was support vector
machine (SVM; 8/15, 53%) and tree-based methods, including
random forest (RF; 6/15, 40%) and extreme gradient boosting
(XGBoost; 4/15, 27%). Other popular algorithms were neural
networks (NN; 5/15, 33%), with various implementations
observed, such as deep NNSs, bidirectional long short-term
memory models, and ensemble of deep learning networks (ie,
the model employed by Ferri et al [30] is described asa“Deep
Ensemble Multitask Classifier for Emergency Medical Calls”
composed of 4 different subnetworks). Naive Bayes (NB) and
k-NN were similarly popular, followed by regression methods.

Table 3. Type and frequency of ML algorithms used by the included studies.

ML®algorithm Studies, n Authors (citations)

Support vector machine 8 Anthony et a [26], Ceklic et a [27], Chin et al [28], Gatto et al [31], Inokuchi et a [32],
Paculaet al [35], Spangler et a [3]b, and Veladas et a [36]

Random forest 6 Anthony et a [26], Ferri et a [30], Inokuchi et a [32], Tollinton et a [5], Spangler et al [3],
and Veladas et al [36]

Neural networks 5 Ceklic et al [27], Ferri et a [30], Gatto et al [31], Inokuchi et al [32], and Marchiori et al [25]

Extremegradient boosting (XGBoost) 4 Ferri et a [30], Inokuchi et a [32], and Spangler et a [3]

Naive Bayes 4 Ceklic et a [27], Chin et a [28], Ferri et a [30], and Veladas et a [36]

K-nearest neighbors 4 Anthony et a [26], Ceklic et a [27], Chin et a [28], and Gatto et a [31]

Logistic regression 3 Anthony et a [26], Ferri et a [30], and Spangler et al [3]

Bayesian network 2 Cotte et a [29] and Yunoki et a [4]

Decision trec® 2 Chin et al [28] and Tollinton et al [5]

Ensermnbled 2 Ceklic et a [27] and Ferri et al [30]

LASSO® regression 1 Inokuchi et al [32]

Multilayer perceptron 1 Chin et a [28]

Hidden Markov model 1 Pacula et al [35]

Hierarchical attention network 1 Gatto et al [31]

Transformer-based 1 Gatto et al [31]

Unspecified algorithms 2 Lai et a [33] and Morse et & [34]

3ML: machine learning.

bSpangler et a [3] did not include support vector machine, random forest, neural networks, or regression models in their “Methods’ but stated in their

“Discussion” that they investigated these algorithms.

®Decision trees here include methods such as gradient boosting but not random forest or extreme gradient boosting.
dceklic et a [27] did not provide information about the specific models incorporated into their ensemble. Ferri et a [30] built their ensemble using a

collection of deep learning subnetworks.
€L ASSO: |east absolute shrinkage and selection operator.

Model Performance Metrics

F,-scorewasthe most used metric (6/15, 40%) to measure model
performance, closely followed by accuracy (5/15, 33%) and
area under the curve (AUC; 4/15, 27%). Furthermore, many

https://www.i-jmr.org/2024/1/e56729

studies tangentially used other quantitative measures, such as
sensitivity or recall and specificity or precision. In the case
where AUC scores were similar between the RF and X GBoost
models in the study by Tollinton et a [5], analysis of other
metrics showed that X GBoost outperformed RF modelsinterms
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of sengitivity (0.93 vs 0.62 in the combined model) but had
lower specificity (0.17 vs 0.56 in the combined model).
Moreover, severa studies investigated how different
combinations of predictors and NL P techniques affected model
performance across ML techniques. For instance, Pacula et al
[35] present an interesting discussion on the impact of various

https://www.i-jmr.org/2024/1/e56729
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approachesto dial ogue processing (turn-level classification and
accounting for speaker role) on triage prediction outcomes.

A summary of the comparators and top-performing models for
each study, alongside information on evaluation metrics used
and datatrain or test split, is shown in Table 4. For models that
were evaluated against non—ML-enhanced methods of triage,
those established triage systems are indicated as well.
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Table4. Top-performing ML algorithms used in each study and corresponding performance metric and model training or testing split grouped by triage

process.

Triage process and study ~ Top-performing

model

Model comparators

Triage comparators  Performance metrics

Training data split
(%)

Emergency medical dispatch

Anthony et a [26] sVM?@ LRb, RFC, k-N Nd _e Accuracy 80
Ceklicetal [27] Ensemble k-NN, SVM, NB', deep NN S}WA" dispatch PPV, sensitivity (recall), 60
+NLPY F1-score
Chinet al [28] Bernoulli NB k-NN, DT!, SvM,NB +NLp Dispatcher evalua- Accuracy, PPV, NPV, 91
tion sensitivity (recall), speci-
ficity
Ferri et a [30] Ensemble NB, LR, RF, GB' +NLP Clinical decison  Accuracy, sensitivity (re- 80
tree call), PPV, F4-score
Spangler et al [3] XGBoogt™ SVM, LR, RF, deep NN Dispatch priority,  Auch, PPV, sensitivity 66
National Early (recall)
Warning Scores
Tollinton et al [5] GB/RF° — — AUC, sensitivity (recall), 80
specificity
Yunoki et a [4] BNPd — — Accuracy 90
Symptom checker /charthot"
Cotteet al [29] BNY — MTSS Cohen k N/AL
Gatto et al [31] SBERTY BERTY, SVM, HANY bi- — PPV, sensitivity (recal), 80
LSTMX +NLP Fy-score
Marchiori et a [25] Bi-LSTM Convolutional NN, recurrent — PPV, sensitivity (recal), 60

NN +NLP F1-score

Telephoneline

Inokuchi et al [32] RFY — Areaunder thereceiver 70

LASSOY regression, deep

NN, X GBoost operating characteristic
curve, PPV, NPV, sensitiv-
ity (recall), specificity
Pacula et al [35] svmd HMMZ +NLP — AUC, F1-score 82
Veladas et al [36] SVM RF, NB +NLP — Accuracy, F1-score, PPV, 64

sensitivity (recall)

83V M: support vector machine.

bLR: logistic regression.

°RF: random forest.

dK-NN: K-nearest nei ghbors.

®No comparator.

"NB: naive Bayes.

9+NLP” indicates that model performance was eval uated across various natural language processing techniques.
NSIWA: St John Ambulance in Western Australia.

IPPV: positive predictive value (precision).

IDT: decision tree.

KNPV negative predictive value.

'GB: gradient boosting.

™X GBoost: extreme gradient boosting.

MAUC: area under the curve.

®The gradient boosting model scored better on sensitivity, but specificity was lower than RF.
PBN: Bayesian network.

YAlternate ML models were not compared.
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"Lai et al [33] and Morseet al [34] reported on symptom checker triage systems but did not provide details on the underlying ML model and comparators

or development.

SMTS: Manchester Triage System.

'N/A: not applicable.

USBERT: sentence hidirectional encoder representation from transformers.
VBERT: Bidirectional Encoder Representation From Transformers.
YWHAN: hierarchical attention network.

*Bi-LSTM: bidirectional long short-term memory.

YLASSO: least absolute shrinkage and selection operator.

ZHMM: hidden Markov model.

Model Data Splitting

Thirteen studies (87%) reported some method for validation,
including randomly partitioning datainto training or testing sets
(10/15, 67%) or training or validation or testing sets (3/15, 20%).
Most studies used some form of cross-validation in thetraining
sets for model construction (8/15, 53%). In addition, various
types of resampling procedures were used, such as k-fold
cross-validation, stratified k-fold cross-validation, repeated
k-fold cross-validation, or repeated random test-train splits.

Discussion

Principal Findings

Wereviewed 15 primary research studies of ML-enhanced triage
models in prehospital telemedicine settings where patients
potentially require emergency care. Wefound that ML -enhanced
triage systemstypically outperformed conventional triage ones;
however, thereislikely abiastoward publishing these types of
positive findings [38]. While the reviewed studies exhibited
several commonalities in terms of predictor types, ML
algorithms tested, and performance metrics, there were key
discrepancies in how data were sourced and processed,
particularly with regard to annotating ground truth labels. We
discuss these similarities and differences in context and how
the new evidence presented here relates to ED overcrowding
and prehospital triage.

Predictor Variables

A critical limitation of prehospital telemedicine triage systems
is the lack of access to objective measures of the patient
condition typically obtained through physical assessment, vital
signs being fundamental metrics of illness severity. Asaresult,
our inclusion criteria ensured that no study had access to a
physica assessment of their participants. Therefore, by
investigating the range of predictors employed by the included
articles, we identified how subjective and indirect indicators of
patient condition are used in remotetriage. Our review indicates
that patient symptoms, age, sex, and comorbidities were the
most frequently occurring predictor variables among structured
data, with NLP techniques used to extract features from
unstructured data. The structured and unstructured data were
not combined in any of the included articles. This finding
emphasizesthe critical importance of considering these4 clinical
and demographic factors for prehospital telemedicine triage
where physical assessment data are unavailable. The consistent
use of patient symptoms, demographics, and comorbidities as
predictor variables across all 3 triage processes reinforces that

https://www.i-jmr.org/2024/1/e56729

they are reliable indicators of a suitable triage outcome.
However, while demographic factors were frequently used
across the studies, only 2 specific factors, namely, age and sex,
were considered.

Notably, we a so highlight the absence of previously identified
important inputs to ML models [12]. Race or ethnicity, region
or geography, medication history, and health system exposure
(hospitalizations, etc) were not represented in the corpus,
however, they should be taken into consideration in prehospital
triage both to improve performance and ensure agorithmic
fairness[39]. The absence of these variables both as predictors
and for post hoc evaluation of algorithmic bias suggests a
significant gap in the extant literature and motivates further
investigation into their potential to generate accurate and
equitable triage outcomes for more diverse populations.
Continuing to develop a comprehensive list of the most
significant variables driving remote emergency triage is
invaluable to improving equitable patient outcomes for all
populations [12]. ldentifying common patterns in predictor
selection (and what is absent) can inform the development of
standardized guidelines for building ML algorithms for triage
using remote-only data. A future with consi stent measurements
of physiologic metrics, such as vital signs, would aso be
invaluable to strengthen prediction. Developing systems or
technol ogy whereby these critical data can be captured remotely
is afuture direction worth exploring.

Ground Truth Labeling M ethods

Our review critically spotlights the variety of methods for
annotating data labels from ground truth. Two papers did not
provide sufficient information, and we classified the remaining
13 into 1 of 4 distinct methods, reflecting varying ML
development philosophies. The most common method—(2A)
post hoc automatic derivation of data labels—indicates
preference for collaboration among domain experts to reduce
human subjectivity and implement large-scale data mapping.
Notably, Ferri et al [30] used apanel of 17 physiciansto develop
a mapping system, which was then automatically applied to
morethan 1 million records. In contrast, using the (2B) method,
Pacula et a [35] reported that 3 psychologists manualy
annotated each of the 427 records. While this review cannot
comment on the comparative efficiencies of these specific
methods, we note that assembling large datasets with ground
truth labels is an arduous and expensive task; thus, there may
be scalability benefits to automatic methods [40].

While we observed trade-offs in data labeling, establishing
methodologically robust ground truth is of paramount
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importance. | nadequate representation of ground truth can lead
to misclassification issues within the ML model, thus reducing
predictive accuracy on external data. This could result in
unintended and potentially serious conseguences, especially in
the context of emergency care. The ground truth triage outcome
has proved challenging to pinpoint, and this scoping review
reveals 4 methods in determining it. However, each method
exhibits limitations and potential manifestations of human
subjectivity.

The accuracy of remote triage is inherently limited by the
absence of physical data, even when carried out by individuals
with domain expertise (eg, physicians). Furthermore, human
bias and lack of experience can lead to either overtriage (ie,
false positives; eg, sending low-acuity patients to the ED) or
undertriage (ie, false negatives; eg, advising high-acuity patients
to stay home), even in cases when physical data are available.
To address this, the strategy of selecting data from only highly
reputable clinicians[25] servesasan inspiration for developing
a standardized evaluation system to identify qualified data
annotators for health care settings. An additiona method to
enhance triage accuracy isinclusion of downstream triage with
accessto more comprehensive data, such asvital signs, detailed
physical assessment, or aprofessional with higher-level training
(eg, aphysician conducting a home visit) [32].

The methodical classification of patients based on a
predetermined list of outcomes minimizestherisk for interrater
disagreement. However, relying solely on these selected
outcomes, such as hospital admission or 2-day mortality [3],
assumes that they are the only factors and of equal importance
in determining the overall risks associated with the patient. This
approach overlooks insights that can be revealed from a
circumstantial and personalized analysis of patient condition.
In addition, many of the inclusion studies selected highly
specific outcomes, such as sepsis, myocardial infarction, and
cardiac arrest [26], which are not generalizable to different
remote triage processes. One potential solution, which no study
inthisreview used, isusing aweighted kappaindex to consider
different categories and disagreements and capture the rank
magnitude of disagreement [41].

Retrospective evaluation of patient data by multiple annotators
holds potential for highly accurate ground truth labels, as it is
the most comprehensive approach observed in this review.
However, we note that the included articles lack information
regarding how evaluators determined such classifications.
Subjectivity in human decision-making persists and variation
in annotators levels of training and resolution strategies
employed leavesroom for further research. Again, implementing
a standardized evaluation system to determine a qualified pool
of data annotators becomes crucial to ensure reliability in the
annotation of ground truth triage label sfor ML -enhanced remote

triage [37].

This analysis of subjectivity in ML systems underscores the
need for nuance regarding objectivity and ground truth. To
enhance remotetriage a gorithm generalizability, comprehensive
datasets must be used. This entails capturing data from each of
the predictor variables outlined in this review, as well as race
or ethnicity, region or geography, and medical history.
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Furthermore, standardized protocols for data labeling across
different clinical settingswould facilitate consistency and enable
meaningful comparisonsand analyses. Thereisaneed for more
well-defined and externally valid procedures for determining
the ground truth in the context of highly intricate and
unstructured data such as remote patient triage.

ML Techniques

This review presents needed insights on the cutting-edge
application of ML methods for remote prehospital triage
systems. SVM, tree-based, and NN methods were commonly
used. These observations are consistent with other reviews of
ED-based implementations [16,42]. To our knowledge, thisis
the first review to provide a mapping between ML model
development and 3 processes of triage in emergency medicine:
emergency medical dispatch, chatbot or symptom checker, and
telephoneline. We uniquely charted the best-performing model
of each article to 1 of the 3 triage processes and generated
insight on the specific elements underpinning each model. By
doing so, we provide insight into how predictive ML models
can be developed for different stages of triage before physical
assessment.

Limitations

We did not directly compare the varied performance metrics
such as the F;-score, precision, recall, and AUC, as this could
lead to misleading conclusions. This was not an objective of
our review due to inconsistencies in reported metrics and
variability in study designs. For instance, certain metrics can
be optimized at the expense of other metrics; for example,
precision and recall are inversely related. Not all metrics are
universally applicable; the F;-score is unsuitable for multiclass
problemsfound in aproportion of included studies. In addition,
F-score assumes fal se negatives and fal se positives are equally
costly, an incorrect assumption in triage problems where
undertriage due to a false negative would have serious
consequences. While AUC is perhapsthe optimal metric choice,
it still has sensitivity to class imbalances, which varied across
the included studies. Of the only 4 articles that reported AUC,
the performance ranged from 0.64 for prediction of conveyance
[5] to 0.88 [35]. A direct comparison among articles reporting
AUC was avoided due to differences in study contexts, which
included diverse triage labels, significant variations in sample
sizesand populations, limited reporting on classimbal ance, and
the use of different validation strategies. Asthisreview did not
facilitate any quantitative analysis of ML model performance,
insights into the accuracy of ML-enhanced triage compared
with conventional remote triage, as well as the quantitative
impact that ML triage may have on patient outcomes and overall
health care systems, could not be derived and future systematic
work is warranted.

Implications for Future Work

ML-enhanced triage presents an opportunity to aleviate the
burden on EDs and support patients’ decision-making when
seeking emergency versus community-based care. Based on the
evidence synthesized here, our callsto thefield areto determine
a prioritized list of high-value predictor variables to consider,
standardize ground truth labeling, and form a consensus on
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validation methods used, such that different health systems can
continuously learn from new developments. This review
provides a foundation for developing guidelines, which will
also create opportunities for comparison across studies to
guantitatively assess the effectiveness and benefits of
ML-enhanced triage regarding patient outcomes and health
system performance. While reducing resources spent on
overtriage is also a priority, it is equally important to focus on
the likelihood of undertriage, as it poses a significant risk to
patients. Therefore, precision, recall, and specificity rates, as
well as algorithmic bias[39], must be carefully monitored and
improved in model development to ensure that safety and
effectiveness are balanced in M L-enhanced triage systems.

Accurate triage recommendations do not guarantee that patients
will follow them [43-45]. In the discussion of using telephone
lines or chatbots during the triage process, further investigation
iswarranted into how delivery methods affect patients’ likeliness
to adhere to the advice generated by ML-enhanced triage
systems. Similarly, in the dispatch and telephone line triage
processes, aquestion that arisesiswhether ML -generated triage
results influence the decision-making process of dispatchers or
providers. This area of research could provide insight on the
most effective stage at which ML-based assistance should be
introduced in the triage process. Exploring the interplay between
ML-enhanced triage advice, patient behavior, and clinician
decision-making will contribute to the optimization of
prehospital telemedicine triage in emergency care.
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Conclusions

Our scoping review of 15 recent studies of ML-enhanced
prehospital telemedicinetriage systems observed heterogeneity
in dataset size, predictors, clinical setting (triage process), and
reported performance metrics. Consequently, a comparison of
ML performance across articles was not feasible, and we note
that identifying the most efficient and accurate ML -enhanced
triage system is valuable for future development and model
deployment in prehospital settings, where a standardized
performance metric such as the AUC would be important to
facilitate comparisons. Standard structured predictors, including
symptoms, age, sex, and comorbidities, across articles suggest
the importance of these inputs; however, there was a notable
absence of other potentially useful data, including medications
and health system exposure. With advancing technology of
transformer-based models [46,47], there exists the potential for
combining structured and unstructured data; an approach that
was also absent in the included articles. The lack of social
variables leaves the potential for algorithmic bias criticaly
unexplored. Ground truth labeling practices should be reported
in a standard fashion as the true model performance hinges on
theselabels. Thisreview establishesan evidence basefor future
investigations and an opportunity to form a consensus and
standardized framework, thereby supporting consistent reporting,
performance comparisons, and collaboratively developed
ML -enhanced prehospital triage systems.
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Abbreviations

AUC: areaunder the curve

ED: emergency department

K-NN: K-nearest neighbors

ML: machinelearning

NB: naive Bayes

NLP: natural language processing
NN: neural network

RF: random forest

SVM: support vector machine
XGBoost: extreme gradient boosting
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