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Abstract

Background: Artificial intelligence is experiencing rapid growth, with continual innovation and advancements in the health
care field.

Objective: This study aims to evaluate the application of artificial intelligence technologies across various domains of respiratory
care.
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Methods: We conducted a narrative review to examine the latest advancements in the use of artificial intelligence in the field
of respiratory care. The search was independently conducted by respiratory care experts, each focusing on their respective scope
of practice and area of interest.

Results: This review illuminates the diverse applications of artificial intelligence, highlighting its use in areas associated with
respiratory care. Artificial intelligence is harnessed across various areas in this field, including pulmonary diagnostics, respiratory
care research, critical care or mechanical ventilation, pulmonary rehabilitation, telehealth, public health or health promotion,
sleep clinics, home care, smoking or vaping behavior, and neonates and pediatrics. With its multifaceted utility, artificial intelligence
can enhance the field of respiratory care, potentially leading to superior health outcomes for individuals under this extensive
umbrella.

Conclusions: As artificial intelligence advances, elevating academic standards in the respiratory care profession becomes
imperative, allowing practitioners to contribute to research and understand artificial intelligence’s impact on respiratory care.
The permanent integration of artificial intelligence into respiratory care creates the need for respiratory therapists to positively
influence its progression. By participating in artificial intelligence development, respiratory therapists can augment their clinical
capabilities, knowledge, and patient outcomes.

(Interact J Med Res 2024;13:e57271) doi: 10.2196/57271
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Introduction

Background
Artificial intelligence is a sophisticated branch of computer
science and engineering endowed with the capability to perform
intricate data analysis, demonstrating a computational
understanding of intelligent behavior [1]. Alan Turing first
introduced the concept of simulating intelligent behavior with
computers in 1950, including a test to assess whether machines
can imitate human intelligence. Later, John McCarthy defined
“artificial intelligence” as creating intelligent machines [2].
Artificial intelligence has evolved from simple rules to complex
algorithms similar to human intelligence, with various
specializations such as machine learning (ML), which uses
patterns for decision-making and can be applied dynamically
to customize patient care. Moreover, ML has progressed into a
more complex form known as deep learning (DL), which uses
algorithms to construct artificial neural networks (ANNs) [2].
These ANNs can independently learn and make decisions,
emulating human brain functionality. On the other hand,
computer vision enables a computer to interpret and comprehend
data from images or videos [2]. It is notable that avoidable
medical errors are the third leading cause of death in the United
States, causing >400,000 deaths annually [3]. Therefore,
integrating the use of artificial intelligence into the health care
field may have strong positive outcomes [4].

Artificial intelligence pertains to computer systems that have
the ability to carry out tasks that are typically exclusive to human
intelligence, including visual and speech recognition,
decision-making, and language translation [5]. Artificial
intelligence systems use techniques such as ML and DL to learn
from multiple layers of digital data. ML is a subset of artificial
intelligence that involves teaching computer algorithms to
acquire knowledge from information and make forecasts or
choices without being directly programmed [5]. DL is a subset
of ML, which involves training deep neural networks to learn
from large datasets that consist of >3 layers and has been
particularly successful in tasks such as image and speech

recognition [5]. Supervised learning, or supervised ML, involves
teaching an algorithm how to map inputs to outputs based on
labeled training data, whereas unsupervised learning involves
discovering patterns and relationships from unlabeled data [4,6].
Reinforcement learning, where an agent learns by making
decisions based on feedback from its environment, has been
applied in video game playing or robotics [5,7]. Similar
applications can be drawn or applied to the field of medicine
[4].

In fact, various artificial intelligence methods, including fuzzy
expert systems, Bayesian networks, ANNs, and combined
intelligent systems, have been implemented across various
medical environments in health care. Specifically, artificial
intelligence applications are crucial in health care as they assist
clinicians in delivering comprehensive health care services to
diverse patient populations with various health conditions [4,8].

In this paper, we conduct a narrative review and provide an
in-depth summary of the latest advancements in artificial
intelligence as it applies to various scopes of practice within
the field of respiratory care. Furthermore, we provide a detailed
discussion about the substantial benefits that accompany the
implementation and integration of such tools within respiratory
care methodologies for clinical purposes. Within this context,
we evaluate the progression and application of artificial
intelligence, highlighting its relevance across various areas
within the field of respiratory care. Experts from various
disciplines, based on their areas of expertise and research
backgrounds, provided insights and summaries regarding the
recent emergence and potential use of artificial intelligence in
different aspects of respiratory care: pulmonary diagnostics,
respiratory care research, critical care and mechanical
ventilation, pulmonary rehabilitation, telehealth, public health
and health promotion, sleep clinics, home care, smoking or
vaping behavior, and neonates and pediatrics.

Objectives
The primary aim of this review was to synthesize existing
research and expert opinions to assess the current and potential
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impacts of artificial intelligence technologies on respiratory
care practices.

Methods

This is a narrative review aimed at capturing the broad spectrum
of artificial intelligence applications within respiratory care.
The focus was on identifying artificial intelligence’s
contributions across several key areas (eg, pulmonary
diagnostics, respiratory care research, and critical care or
mechanical ventilation).

To ensure comprehensive coverage, each domain was
independently explored, with the MEDLINE database serving
as the primary source of literature; a narrative literature search
was performed in MEDLINE and Embase databases via the
Ovid portal to select studies that met the inclusion criteria. We
included studies that were published in English with full text
available, without restrictions on publication date. This review
focused on articles discussing the application of artificial
intelligence in key respiratory care areas as indicated in their
titles or abstracts. Multimedia Appendix 1 provides more
information regarding the search terms.

Results

This review identified key artificial intelligence applications in
respiratory care. Each of the following sections highlights
artificial intelligence’s role and potential advancements in these
aspects of respiratory care.

Artificial Intelligence in Pulmonary Diagnostics
Advanced technologies such as artificial intelligence, precise
ML, and DL have been proposed and harnessed for an array of
clinical applications in respiratory care, notably in the realms
of pulmonary imaging and pulmonary function tests (PFTs)
[9-11]. In addition, certain clinical, ethical, and usability
challenges are inherently associated with the implementation
of artificial intelligence in the sphere of respiratory care [12].

Artificial Intelligence Applications in Chest Imaging
Artificial intelligence applications are frequently used in
conjunction with chest x-rays, computed tomography (CT), and
magnetic resonance imaging. By leveraging artificial
intelligence, we can analyze specific regions in these images,
calculate volumes, and extract features with remarkable speed
and accuracy. When integrated with ML models, artificial
intelligence can assist greatly in quantifying and categorizing
image characteristics. For respiratory care practitioners (RCPs),
chest x-rays are an essential tool commonly used in critical
settings to screen for and interpret pulmonary pathologies. ML
models have been used to evaluate chest x-rays, particularly in
the diagnosis of COVID-19. For instance, a previous review
reported that ML models were used to predict the prognosis of
patients with COVID-19 based on chest x-ray analysis [13]. In
addition, another ML model demonstrated commendable
performance, with a sensitivity of 78% (95% CI 74%-81%) and
a specificity of 82% (95% CI 78%-85%) [14]. This highlights
the tremendous potential of artificial intelligence in assessing

x-rays, enabling clinicians to make evidence-based decisions,
and offering a cost-effective solution.

Artificial Intelligence Applications in PFTs
PFTs represents one of the crucial responsibilities of RCPs,
requiring appropriate training to yield reliable results. Indeed,
effective coaching for RCPs is necessary to proficiently
administer standard PFTs and derive key indicators, such as the
forced vital capacity (FVC), forced expiratory volume in the
first second, and forced expiratory volume in the first
second/FVC ratio. Moreover, these indexes are evaluated and
reported using percentage predicted values, with abnormalities
defined by fixed cutoff values. It is important to note that these
values have been reported to be influenced by variables such
as age and height [15]. Consequently, as PFTs can be reported
numerically and reference values are widely available for
numerous testing methodologies, ML models could serve as
effective tools for evaluating lung function tests. This assertion
is supported by a previous multicenter study, which compared
a trained ML model with pulmonologists. The ML model was
found to outperform pulmonologists in detecting physiological
patterns and diagnosing pulmonary diseases [16]. This
exemplifies a compelling application of ML to assist clinicians
in optimizing diagnostic accuracy through the use of ML-trained
data. In addition, ML models have been used to detect poor
FVC maneuvers [17]. This could significantly aid practitioners
in smaller, rural, or nonspecialist clinics by enabling them to
evaluate the maneuver before interpreting the results. Notably,
it has been previously highlighted that spirometry maneuvers
in general practitioners’ clinics tend to be inaccurate [18].

Despite the availability of robust reference ranges for various
ethnic and age groups, spirometry remains underused [19,20].
This deficiency may also be attributed to a lack of trained RCPs
to administer this test. By using ML models trained to identify
pulmonary pathologies, a cost-effective health care model for
pulmonary care can be established, thus aiding in evidence-based
clinical decision-making. Indeed, objective physiological
pulmonary tests were reported to be underused in advanced
health care services [20].

Artificial Intelligence Applications in Pulmonary Disease
Management
Artificial intelligence and innovative technology offer various
ways to enhance personal adherence to therapy, with smart
inhalers being a prime example [21,22], and allow for early
detection of worsening in chronic pulmonary disease [23,24].
Furthermore, wearable biomedical sensors, for example, can
measure physiological parameters and assist in identifying cases
of asthma exacerbations and symptoms of worsening chronic
obstructive pulmonary disease (COPD) episodes [23,25].
Wearable sensors can also identify environmental parameters,
which can be used to create air quality maps, benefiting patients
with atopic asthma [26]. Moreover, in the case of COPD,
scattered data from PFTs and other medical investigations have
enabled the generation of accurate COPD diagnoses and
minimized misdiagnoses of asthma as both conditions share
symptoms, such as airflow limitations [27,28]. These examples
highlight personalized care that focuses on individualized traits
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to enhance respiratory disease management and alleviate its
burden.

In summary, artificial intelligence offers significant potential
in pulmonary diagnostics, enhancing accuracy in chest imaging
and PFTs. While it improves decision-making and efficiency,
challenges such as ethical concerns and the need for trained
practitioners remain.

Artificial Intelligence in Respiratory Care Research

Overview
The field of artificial intelligence is rapidly evolving, driven by
continuous innovation and research advancements. As a result,
the applications of artificial intelligence and ML have expanded
to include diverse areas, such as statistical analysis, literature
searches, and manuscript preparation for publication [29,30].
In this context, we compiled and analyzed evidence pertaining
to artificial intelligence applications in respiratory care research.

Applications of Artificial Intelligence in Respiratory
Care Research
Artificial intelligence is used to gather, store, access, and analyze
data, including large and complex datasets [31,32]. It has proven
effective in analyzing data that might otherwise be too
time-consuming or require hiring external experts and analysts
to evaluate [31]. Furthermore, researchers continue to develop
new ML techniques for various applications in scientific
research. These techniques help convert raw data into valuable
insights, make predictions, categorize information, and enable
highly informed decision-making through innovative approaches
[33]. Researchers have also adopted novel technologies such
as blockchain to support artificial intelligence research,
particularly in critical fields such as medicine [34]. Finally, the
rapid growth of artificial intelligence and ML in respiratory care
research makes it challenging to provide a comprehensive
overview of these evolving technologies.

Functions of Artificial Intelligence in Respiratory Care
Research

Analysis

Artificial intelligence enables faster data analysis compared to
traditional methods, which typically rely on human-driven
sequential procedures for data checking, cleaning, and analysis.
Artificial intelligence also enhances the efficiency of filtering
and extracting information from datasets [31]. Moreover,
artificial intelligence can provide highly accurate results,
increasing the reliability of the data and the overall rigor of the
research. These technologies are less prone to human errors,
resulting in a lower margin of error than human analysis [31].

Rapid Advancements

ML software, applications, and techniques gather information
and adjust their operations to improve performance on a given
task. For example, search engines use user interactions and
search histories to deliver results tailored to the user’s specific
interests. These ML techniques allow artificial intelligence to
continuously improve at an accelerated pace [2].

Data Handling

This is a crucial aspect of the research process. Effective data
gathering, storage, and accessibility are invaluable tools for
researchers. The researchers recognize the importance of
cleaning the data before conducting analysis. Artificial
intelligence uses various tools and approaches to safeguard
collected data from unauthorized access and ensure their
long-term storage without accidental tampering, preserving
them for future use [31].

Role of Artificial Intelligence in Respiratory Care
Research

Decision-Making

Artificial intelligence is a unique and exciting field within ML
that seeks to bridge the gap between humans and machines.
This technology focuses on improving how artificial intelligence
clearly explains and translates information to users, enabling
them to make more informed decisions [35]. Advancements in
this technology enable machines to more easily predict the
outcomes of actions and decisions for users. Consequently,
researchers may use artificial intelligence to assess parameters
before making decisions, ultimately enhancing the quality of
their research.

Imaging

Artificial intelligence has improved the capture and analysis of
different types of images [36]. This can further identify
pathologies and remarks of various respiratory disease by
providing accurate and consistent information. These images
can be used for clinical and research purposes.

Diagnosis

Researchers have validated the high accuracy of artificial
intelligence in diagnosing various respiratory conditions and
diseases [37]. These technologies can reduce health care
providers’workloads without compromising the quality of care.
Such achievements are acknowledged by the scientific
community for enhancing the incorporation of artificial
intelligence within the health care sector.

In summary, artificial intelligence represents the next frontier
in respiratory care and medical research. While artificial
intelligence has already made significant progress, its future
promises even greater potential, particularly in areas such as
generalization, understanding, data efficiency, transparency,
ethical decision-making, emotional intelligence, robustness,
and real-time learning. These developments will continue to
enhance research and problem-solving across various fields.

Artificial Intelligence in Critical Care or Mechanical
Ventilation
The field of critical care medicine is experiencing significant
transformations with the integration of artificial intelligence
technologies. Artificial intelligence has proven effective in
predicting various clinical outcomes, such as sepsis [38],
circulatory failure [39], and mortality rates [40]. Since the 1970s,
artificial intelligence and ML have played a pivotal role in
mechanical ventilation. An early application, the ventilator
manager monitoring system [41], assists clinicians by
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summarizing the patient’s physiological status, detecting adverse
events, suggesting corrective actions, and recommending
adjustments to ventilatory therapy based on long-term
assessments. It also identifies measurement errors and helps
maintain patient-specific goals for ongoing evaluation. Another
example, the VQ-ATTENDING system [42], evaluates and
provides feedback on ventilator settings to ensure their
appropriateness. Furthermore, Ganzert et al [43] emphasized
that ML and data-mining techniques provide an objective means
to analyze the pressure-volume loop obtained through various
methods, enhancing clinical decision-making in critical care
environments.

Many mechanical ventilation modes do not strictly use artificial
intelligence or traditional ML. Instead, they are primarily
closed-loop ventilation modes, such as automated ventilation,
that use advanced feedback control systems. These systems
automatically adjust ventilator settings based on the patient’s
pulmonary mechanics, using complex mathematical models to
optimize respiratory support [44]. A detailed summary of these
automated ventilation algorithms is presented in Table 1 [45].
The significant advancements in software and the power of
multi-microprocessors have facilitated an increase in the variety
and complexity of ventilation modes [44,45]. Currently, there
are almost 500 different names for commercial modes derived
from 55 distinct ventilators. However, a taxonomy classification
reveals that only 74 of these modes are truly unique [46]. Recent
data [44] demonstrate that, in patients with moderate to severe
acute respiratory distress, the closed-loop ventilation mode,
specifically INTELLiVENT–adaptive support ventilation (ASV),
resulted in lower transpulmonary driving pressures, inspiratory
pressures, and respiratory rates while increasing tidal volume
compared to conventional ventilation. INTELLiVENT-ASV
automatically sets and adjusts tidal volume, respiratory rate,
positive end-expiratory pressure, and the fraction of inspired
oxygen to minimize the work and force of breathing. This mode
operates based on measured physiological parameters such as
end-tidal carbon dioxide and oxygenation saturation, as well as
user-defined maximum limits (eg, maximum pressure limit)
[45]. Another randomized controlled trial by De Bie et al [47]
indicated that, in patients undergoing cardiac surgery,
INTELLiVENT-ASV led to 30% more time spent using optimal
ventilation settings, 2.5% less exposure time to injurious
ventilation, significantly reduced risk of severe hypoxemia (risk
ratio=0.26, 95% CI 0.22-0.31), and faster assumption of
spontaneous breathing (hazard ratio=1.38, 95% CI 1.05-1.83)
compared to conventional ventilation.

Artificial intelligence has the potential to facilitate individualized
mechanical ventilation by using comprehensive patient and
population data alongside continuous monitoring. A recent
systematic review exploring artificial intelligence applications
in mechanical ventilation identified its most prevalent uses:
predicting weaning success, initiating mechanical ventilation,

detecting ventilation complications, and recognizing
patient-ventilator asynchrony. However, most of the studies in
this review exhibited significant bias, and as they were
retrospective single-center studies, they suffered from limited
external validity [48]. Moreover, extensive research has used
computational modeling to provide a mechanistic understanding
of respiratory pathophysiology [49,50] and optimize ventilator
settings [51-53]. These studies underscore the depth and range
of analytical strategies that can enhance the efficacy and
personalization of mechanical ventilation.

The Better Care system is not a ventilation mode but a
closed-loop monitoring system that uses an algorithm to
continuously assess a patient’s respiratory effort. It detects and
quantifies ineffective efforts, providing real-time feedback to
clinicians. The system’s effectiveness has been validated for
accuracy against experienced clinicians, showing high sensitivity
and specificity in detecting ineffective respiratory efforts [54].
The implications of these capabilities are significant for patient
outcomes. For instance, a study highlighted that
desynchronization during mechanical ventilation is common
and is associated with increased mortality [55]. In addition, an
innovative detection tool within the system has been developed
to automatically identify and quantify reverse triggering events,
a prevalent issue. This algorithm demonstrated high sensitivity
and specificity in comparison to manual detection by 3
experienced clinicians [56].

Despite the potential benefits of artificial intelligence, several
limitations warrant careful consideration. One major limitation
is the need for large volumes of high-quality data to effectively
train artificial intelligence algorithms. In respiratory care, data
collection is often time-consuming, and variability in data
collection and recording practices can pose significant
challenges. Another critical issue is the potential for bias within
artificial intelligence algorithms, which can lead to inaccurate
predictions or recommendations, as highlighted by Obermeyer
et al [57]. It is essential to ensure that the deployment of artificial
intelligence technologies adheres to ethical standards and
responsible practices to mitigate potential harms or negative
consequences. This includes promoting transparency and
accountability in artificial intelligence development and use,
addressing concerns such as bias and discrimination, protecting
individual privacy and security, and ensuring that artificial
intelligence technologies contribute positively to humanity
[57,58]. Furthermore, it is crucial that respiratory therapists
(RTs) are equipped with the necessary skills, training, and
knowledge to effectively interact with and interpret the outputs
of artificial intelligence algorithms. This training will enable
them to integrate artificial intelligence insights into clinical
decision-making processes effectively. In brief, the potential of
artificial intelligence in mechanical ventilation relies on
overcoming challenges such as data quality and algorithmic
bias and on ensuring ethical use.
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Table 1. A summary of some of the currently available algorithms for intensive care unit mechanical ventilators [45].

Year introducedLimitationsBenefitsDescriptionAlgorithm

1992Improves patient-ventilator syn-
chrony, may reduce sedation re-
quirements, and better matches
patients’ respiratory drive.

Delivers inspiratory assis-
tance proportional to patient
effort.

PAV+a by Medtronic • Requires additional monitoring.
• May not be suitable for patients

with unstable respiratory drive,
dynamic hyperinflation, or air
leak.

1998Simplifies ventilator manage-
ment, improves patient-ventilator
synchrony, and reduces time on
a ventilator.

Automatically regulates tidal
volume and respiratory rate
based on the set minute
ventilation and lung mechan-
ics.

ASVb by Hamilton • May not be suitable for patients
with severe lung injury or in-
creased airway resistance.

2002Improves patient-ventilator syn-
chrony, may reduce sedation re-
quirements, and allows for more
precise and personalized ventila-
tion.

Delivers assistance propor-
tional to patients’ diaphrag-
matic electrical activity.

NAVAc by Maquet • Requires specialized equipment
and training.

• May not be suitable for patients
with certain neurological or
neuromuscular conditions.

—ePrevents lung injury and simpli-
fies ventilator management.

Targets a specific tidal vol-
ume via titrating the inspira-
tory pressure.

VTVd, available from
many manufactures

• May not be suitable for patients
with unstable lung mechanics,
leaks, or varying respiratory de-
mand.

—Creates appropriate intrinsic

PEEPg to prevent lung derecruit-
ment, leading to improved oxy-
genation and reduced VQ mis-
match.

The duration of the lower
pressure is automatically
adjusted to terminate expira-
tion at a certain percentage
of peak expiratory flow set
by the user.

Auto-release feature in

APRVf by Dräger

• May require frequent adjust-
ments and monitoring.

• More studies are needed to deter-
mine its long-term efficacy and
safety.

—Accurate detection of inspiratory
efforts while a leak is present,
dynamic adaptation to changing
patterns, and adjustment of pres-
sure support effectively

NIVh advanced algorithm to
optimize patient-ventilator
synchrony

Auto-Trak by Philips • Effectiveness varies with pa-
tients.

• May require fine-tuning.
• Requires skilled health care pro-

fessional supervision. Influenced
by sensor integrity.

• Not for invasive ventilation.

2011Personalized and protective ven-
tilation, reduced clinician work-
load, and a faster weaning pro-
cess

Automatically adjusts VT
i,

RRj, PEEP, and FiO2
k aim-

ing to lower the work and
force of breathing.

INTELLiVENT-ASV by
Hamilton

• Complexity, limited data inputs,
restricted human judgment, and
limited validation in certain
populations

aPAV+: proportional assist ventilation.
bASV: adaptive support ventilation.
cNAVA: neurally adjusted ventilatory assist.
dVTV: volume-targeted ventilation.
eNot reported.
fAPRV: airway pressure release ventilation.
gPEEP: positive end-expiratory pressure.
hNIV: non-invasive ventilation.
iVT: tidal volume.
jRR: respiratory rate.
kFiO2: fraction of inspired oxygen.

Artificial Intelligence in Pulmonary Rehabilitation
The advent of technology has ushered in a new era in which
DL and ML are increasingly recognized as vital tools for
enhancing the accuracy and quality of health care delivery [59].
These technologies have found multiple applications in the
medical field, ranging from speech recognition for detecting

changes in breathing patterns to the diagnosis of
post–COVID-19 condition, cancer, and COPD [60-63].
Moreover, artificial intelligence has been instrumental in
developing tailored exercise programs for sports and
weightlifting based on extensive data analysis of tracked vitals,
exercise patterns, intensity, and physical limitations [64,65].
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Exercise is a critical component of rehabilitation in respiratory
health care, as noted by Jones et al [66]. The integration of
web-based exercise programs has made rehabilitation more
accessible, allowing therapists and patients to engage more
efficiently [67]. Pulmonary rehabilitation for patients with
muscular impairments and injuries or COPD includes using
methods such as neuromuscular stimulation of different muscles
for exercises and inspiratory muscle training to improve the
physical state [68]. These exercises adhere to established
standards that guide clinicians in delivering electrical stimulation
as part of conventional care. However, artificial intelligence
has the potential to transform this domain by offering more
precise rehabilitation programs tailored to individual needs after
discharge or for those requiring specific respiratory or
neuromuscular stimulations. Adjusting pulse amplitude and
frequency through artificial intelligence can enable clinicians
to prescribe these interventions with reduced effort and ensure
uniformity in treatment parameters [69,70].

Nevertheless, artificial intelligence’s role in rehabilitation
extends to integrating programs that control neuromuscular
stimulation delivery and provide the necessary parameters. This
integration could aid in enhancing strength and tolerance through
individualized breathing exercises tailored to each patient’s
condition. In addition, the care regimen includes both invasive
and noninvasive mechanical ventilation to support and manage
breathing for patients who are critically ill or chronically
dependent, requiring continuous monitoring and adjustments
as needed. Deep ML holds significant promise in intensive care
units, wards, and outpatient clinics. It can be used to conduct
tests (eg, of pulmonary function) to monitor breathing patterns,
analyze captured wave data, and recommend or adjust the
delivery mode and settings optimally for various situations.
This ensures precision and proper interpretation and aims for a
more personalized treatment approach, facilitating the
rehabilitation process [16,71]. For these reasons, rehabilitation
is a crucial phase in any patient’s recovery and management of
their condition, significantly influencing their physical,
emotional, and social engagement with family, friends, and
society [72].

Hence, using artificial intelligence can facilitate access to
tailored respiratory or physical exercises devised through the
automated analysis of various health markers. These exercises
can be personalized using data collected at home via portable
devices, smartphones, or wearables, which capture live data and
store them in a cloud. This setup allows both practitioners and
patients to access the information remotely. Artificial
intelligence can also be leveraged to determine the optimal times
for medication intake, relaxation, and sleep through continuous

monitoring—all crucial for enhancing patient outcomes and
improving overall health care delivery. Another promising
application of artificial intelligence is the external recording
and automated analysis of breathing patterns. This technology
can assess breathing variability, adding a vital metric for
diagnosing diseases by tracking improvements or deteriorations
in respiratory function [73].

In summary, the integration of artificial intelligence into
pulmonary rehabilitation represents a significant advancement
in health care. Through the use of artificial intelligence for tasks
such as neuromuscular stimulation and respiratory function
monitoring, this technology has the potential to improve patient
outcomes and personalize treatment, setting a new standard for
health care and quality of life.

Artificial Intelligence in Telehealth
Artificial intelligence represents an approach that falls under
the broader category of telehealth, yet it transcends mere use
of information and communications technology in supporting
health care [74,75]. ML and DL are 2 processes that underpin
artificial intelligence, as depicted in Figure 1. Their application
in health care is becoming increasingly prominent, enhancing
learning, justifying reasoning, and supporting decision-making
processes [76,77] Current evidence showcases promising results
from the application of artificial intelligence in driving health
care innovations [78,79].

Furthermore, a recent systematic review and meta-analysis
indicated that this new eHealth approach has gained considerable
acceptance among users, proving beneficial in enhancing disease
management and quality of life [80,81]. In addition, the ability
to detect deterioration and exacerbations in patients with COPD
before they occur has been shown to reduce hospital admissions
and health care costs [82,83]. In idiopathic pulmonary fibrosis,
artificial intelligence has been instrumental in screening
radiologic data and simulating accurate diagnoses, thereby
saving resources and supporting medical decisions [84,85].
Interpreting results such as cough symptoms through positron
emission tomography and CT represents another promising area
for artificial intelligence application [86].

In cough analysis, researchers have developed algorithms
capable of detecting cough signals, although human input is
still essential for refining data and verifying the presence of
these events [87,88]. This progress necessitates an enhancement
of academic standards for RCPs, enabling them to effectively
analyze these signals. Additional applications of artificial
intelligence in health care include symptom screening, location
detection, infection zone alerts, and the use of robotic surgeons
to assist in operations [79,89].
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Figure 1. The Telehealth Umbrella Includes Artificial Intelligence, Machine Learning, Deep Learning, and Traditional Data Analysis.

Despite the feasibility and benefits achieved by the application
of artificial intelligence in health care, crucial determinants for
its operation and sustained use must be identified. Factors such
as familiarity with the technology, internet access, data
availability, and patient privacy are essential in the ongoing
operation and sustainability of artificial intelligence in health
care [75,90]. In addition, there is an urgent need to base artificial
intelligence applications in health care on a theoretical model
that links artificial intelligence content, mechanisms, and
outcomes. Addressing current barriers such as lack of
knowledge, training, and time requires further research based
on real-time clinical data, not just general perceptions about
using these telehealth applications [91]. While artificial
intelligence may partially or completely transform the health
care discipline, standardization and human factors are still
necessary for optimal functionality. Artificial intelligence in
the clinical setting was initially developed to support health
care services and physicians and not intended to replace them.
However, as artificial intelligence applications rapidly integrate
into health care services, this scenario may change in the coming
years. Current efforts should be monitored to minimize errors
and establish excellent and sustainable health care services.

Artificial Intelligence in Public Health and Health
Promotion
Due to the explosive growth in health-related data, artificial
intelligence, including subfields such as ML, now holds
promising potential to enhance public health. Artificial
intelligence provides unprecedented insights into social,
behavioral, and environmental health determinants. These
insights can guide health policy formulation, prioritize focus
areas, and foster health improvements across entire populations
[92-96]. The substantial advancements in informatics and
biotechnology have catalyzed the modernization of various
fields, including public health. Precision public health, a
contemporary version of public health, uses routinely collected
data and artificial intelligence to reinforce existing

evidence-based methodologies. The aim is to foster an agile,
responsive, and data-driven health care system [97-99].

Artificial intelligence serves as a robust tool for big data analysis
in biostatistics and epidemiology. Artificial intelligence
algorithms facilitate the detection of intricate patterns in data,
which may be challenging for human analysts to discern. These
include the identification of disease-specific biomarkers, the
prediction of patient outcomes, and the analysis of gene
expression data [100,101]. Furthermore, leveraging artificial
intelligence in big data analysis not only enhances the explained
variance in models but also addresses the shortcomings
associated with reliance on a single data source [102].

Moreover, in the realm of health policy and management,
artificial intelligence can aid in intricate decision-making and
handle complex logistical tasks through real-time information
provision. It has been used to tackle health-related challenges,
including overcoming the limitations of low- and middle-income
countries in achieving the United Nations’ Sustainable
Development Goals [103]. Artificial intelligence has also been
used in surveillance to visually represent health events
geographically and temporally, leveraging public data sources
[104], allocation of resources [105], and staffing requirements
[106]. In environmental health science, artificial intelligence
enhances our understanding of environmental health, analyzes
ecological data, and examines the association between
environmental factors and health outcomes [107]. In addition,
artificial intelligence is extensively used in social and behavioral
sciences to deepen our understanding of human behavior through
extensive data modeling and investigate correlations among
social factors, behavioral factors, and health outcomes. For
instance, some studies analyze social media posts to determine
the relationship between mental health and social media use,
whereas others create models to predict drug use based on a
person’s social media activity [108].

Moreover, artificial intelligence can be instrumental in
determining the most effective strategies to promote positive
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health behaviors. This application of artificial intelligence can
potentially enable early interventions and lead to improved
outcomes in mental health care [109] and chronic disease
management and prevention [110]. In addition, artificial
intelligence offers innovative ways to facilitate health behavior
changes. For instance, it can support smoking cessation
programs by using sentiment analysis of X, formerly known as
Twitter, data to identify and target individuals most likely to be
responsive. This approach leverages artificial intelligence’s
capability to analyze vast quantities of data, customizing health
interventions to increase their effectiveness [111].

Given the prevalence of respiratory health threats, incorporating
artificial intelligence into public health measures for respiratory
diseases can lead to more targeted, timely, and
population-specific interventions. An example of this is BlueDot,
an artificial intelligence–driven algorithm that successfully
predicted the early spread of respiratory infections during the
initial stages of the COVID-19 outbreak in Wuhan and the Zika
virus spread in South Florida. Such applications of artificial
intelligence demonstrate significant potential for pre-emptively
managing future respiratory health threats [112-114]. Beyond
disease prediction, artificial intelligence has numerous other
applications in respiratory health. These include developing
sophisticated methods for analyzing medical images such as
x-rays or CT scans, which can enhance diagnostic accuracy. In
addition, artificial intelligence is used to predict disease
progression and patient outcomes, providing valuable insights
that can guide treatment plans and improve patient care
[9,11,84,115,116].

In summary, integrating artificial intelligence into public health
and health promotion efforts can significantly enhance
respiratory care. By enabling personalized interventions,
facilitating early detection of exacerbations, and implementing
data-driven strategies, artificial intelligence substantially
improves overall respiratory health outcomes from a public
health perspective.

Artificial Intelligence in Sleep Clinics
Artificial intelligence, particularly ML, is increasingly prevalent
in sleep medicine. The primary use of artificial intelligence in
this field involves classifying sleep stages in polysomnography
data capitalizing on ML’s self-learning capabilities [117].
Furthermore, automated polysomnography scoring has been
assessed for its potential to augment the efficiency of sleep
technologists. By integrating manual reviews with specific
computer-derived polysomnography attributes—such as
automated sleep spindle detection, sleep depth, and delta
duration—interrater reliability has improved. In addition,
innovative measures of sleep depth have shown predictive
abilities for subsequent arousal [118]. Research on the accuracy
of computer-based sleep staging versus human-based scoring
has been ongoing since the early 90s. Challenges such as limited
sample sizes and the unavailability of sleep-scoring software
have historically complicated accurate sleep stage scoring [119].
A study exploring obstacles to artificial intelligence use in sleep
medicine identified barriers across technology, data, regulation,
human resources, education, and culture, many of which are
common to artificial intelligence implementations in various

medical diagnostic settings. Thus, addressing these barriers is
crucial for enhancing future artificial intelligence applications
in the field [120]. ML can significantly enrich polysomnography
by unveiling patterns that traditional methods overlook. When
combined with clinical and demographic data, it enhances
diagnostics and patient care, offering more accurate and
comprehensive subtyping of sleep disorders [121]. Although
polysomnography is considered the standard screening tool,
other questionnaires such as the Berlin Questionnaire,
STOP-Bang questionnaire, and Epworth Sleepiness Scale are
also widely used. Despite their cost-effectiveness and
accessibility, the accuracy of these tools has been questioned
[122]. Consequently, recent research has focused on the
application of artificial intelligence models for automated
scoring and respiratory event detection to enhance the diagnosis
of respiratory disorders and more comprehensively capture sleep
events [123]. One study assessed the efficacy of generalized
regression neural networks in detecting sleep stages, respiratory
events, and limb movement in patients with obstructive sleep
apnea (OSA), finding that this neural network could predict
OSA presence with 98.9% sensitivity and 80% specificity. The
aim was to explore whether neural networks could reduce the
need for polysomnography in patients without OSA and guide
patients with OSA toward treatment rather than diagnostic
studies [124]. Another approach used a different neural network
with 4 readily available inputs—sex, age, BMI, and snoring
status—to demonstrate how an ANN could predict OSA in a
clinical setting without the need for oximetry or
polysomnography, achieving an accuracy of 86.6% [125]. In
addition, a study developed an artificial intelligence–based
model using easily accessible questionnaire information to
predict sleep apnea, outperforming logistic regression with a
sensitivity of 81.8% to 88% and a specificity of 95% to 97%
[126].

In summary, artificial intelligence systems could significantly
enhance the landscape of sleep diagnostics by addressing
traditional limitations, streamlining the diagnostic process, and
providing more accurate results, ultimately benefiting patients
across various sleep disorders.

Artificial Intelligence in Home Care
Artificial intelligence has emerged as a crucial technology that
enhances the quality of both short- and long-term medical care
services, including home care [127,128]. Furthermore, the
application of artificial intelligence and ML is anticipated to
improve the effectiveness and cost-efficiency of home care as
well as enhance patient care overall [129].

An example of artificial intelligence application in home care
is the myAirCoach system, which has been effective in
managing asthma and improving quality of life among patients
with asthma [130]. A study has demonstrated the system’s
efficacy in monitoring patients with asthma, leading to reduced
severity of asthma exacerbations. However, further research is
necessary to fully understand its impact on patient outcomes
[130]. The Care Robot represents another artificial intelligence
application used to track medication adherence among long-term
patients. It alerts caregivers when a patient refuses their
medication [131].
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The use of artificial intelligence in home care settings is
expanding, including the development of an artificial
intelligence system designed to assist in assessing and detecting
the progression of Parkinson disease (PD) using nocturnal
breathing signals during sleep [132]. The application of artificial
intelligence in PD evaluation entails multiple benefits. It can
reduce the duration and cost of clinical trials; facilitate drug
development; and, most importantly, enhance early assessment
of PD [132].

Artificial intelligence can be transformative in home care
settings, particularly for rehabilitation and palliative care. A
study examining home-based rehabilitation using smartwatch
and smartphone apps with an ML algorithm for patients
requiring physical therapy found that an artificial
intelligence–driven home system could enhance outcomes and
offer a cost-effective solution for individuals with chronic stroke
[133]. In addition, artificial intelligence and ML have been
applied for patients with cancer receiving palliative care.
Systems designed to assess and monitor medical demands have
proven pivotal in managing hospitalization needs. One such
system helps palliative care units predict the number of patients
requiring hospital admission, thereby improving patient
management [134]. A comprehensive system has been
developed to assess, monitor, and predict the medical needs and
hospitalization requirements of patients with cancer. This
artificial intelligence–enhanced system aids palliative care units
in managing patient care more effectively by forecasting the
need for hospital admissions [134].

In summary, the use of artificial intelligence and ML in home
care settings is proving transformative. These technologies not
only manage chronic diseases more efficiently but also
significantly improve rehabilitation and palliative care processes.
Artificial intelligence facilitates a cost-effective approach to
enhancing patient outcomes through accurate monitoring and
prediction of medical needs. Looking ahead, further
advancements in artificial intelligence promise to expand its
potential in home health care delivery even more.

Artificial Intelligence in Smoking or Vaping Behaviors
Both smoking and vaping, the latter involving electronic nicotine
delivery systems, represent complex behaviors that pose
significant public health threats [135]. Artificial intelligence
applications are increasingly being used in the study of smoking
and vaping behaviors. These applications use various approaches
to predict outcomes related to behavioral factors, treatment
efficacy, disease diagnosis, surveillance data, and policy
implementation [136-165].

Supervised, unsupervised, and hybrid ML techniques, alongside
DL and natural language processing, have demonstrated validity
and precision in predicting smoking- or vaping-related
outcomes. These advancements could pave the way for
personalized care, enhanced cessation services, and more
advanced tobacco control implementation and research
[136-165].

Consequently, most artificial intelligence applications related
to this topic have been deployed to predict smoking or vaping
behaviors and their associated factors [136-146,165]. ML and

natural language processing are increasingly used to understand
smoking or vaping behaviors from various perspectives,
including behavioral perception, initiation, continuation, and
dependence [137-140,146]. Similarly, various studies have used
ML approaches to evaluate mobile apps for smoking or vaping
cessation as well as adherence to nicotine replacement therapies
[141-143]. In addition, the applicability and accuracy of
physiological and wearable sensors in monitoring smoking
behavior have been validated using a support vector ML
approach [144-146].

It is noteworthy that numerous studies have used smoker data
to aid in disease diagnosis and staging predictions. DL and data
from chest radiographs and CTs have been effectively used for
lung cancer screening. This method has successfully identified
high-risk smokers and ascertained their disease stages, predicted
prognoses, and estimated mortality rates [147-149]. In addition,
gene expression studies involving smokers—which focus on
lung cancer and COPD—have been conducted using ML,
specifically using the support vector machine method [150,151].
Furthermore, the extreme gradient boosting method has been
used to predict noncommunicable diseases induced by smoking
through analyzing extensive self-reported datasets [152].

Several artificial intelligence approaches have been used to
develop surveillance and registry systems for smokers, as well
as to identify public health support and tobacco control threats
on social media. Using natural language processing, numerous
studies have mined electronic medical and dental records along
with medication data to track tobacco use, assess documentation
quality, and study longitudinal tobacco use and related health
issues. This has significantly contributed to the establishment
of tobacco use registries and surveillance systems [153-159].
In addition, through the use of DL and ML techniques, various
studies have evaluated public health support for health
messaging, assessed public health threats to tobacco control
measures, processed images for tobacco point-of-sale
advertising, and analyzed smoking locations and environments
[111,160-165].

In summary, the application of artificial intelligence in assessing
smoking or vaping outcomes has proven both innovative and
effective. Given the complexity of these behaviors, sophisticated
tools such as artificial intelligence provide a new lens for
understanding, preventing, and treating them. The promising
potential of artificial intelligence applications in this field
warrants further investment, aiming ultimately to reduce the
health complications associated with smoking and vaping.

Artificial Intelligence in Neonates and Pediatrics
The common practice of managing or detecting clinical
deterioration in neonatal and pediatric settings primarily depends
on the competency of health care providers and the experiences
of parents. However, technological advancements in patient
assessment and monitoring within these settings present
significant opportunities for artificial intelligence application
[166].

Pediatric and neonatal diseases often display less heterogeneous
patterns and generally have more complete records compared
to adult conditions, factors that significantly enhance the
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potential of artificial intelligence applications in pediatric and
neonatal health care [167]. In addition, the practice of admitting
neonates from birth enables focused monitoring of physiological
parameters and other clinical variables from the outset. Current
research on artificial intelligence–based applications for
pediatric respiratory conditions primarily focuses on 3 domains:
breath sound analysis, chest imaging interpretation, and PFT
analysis [168].

Unfortunately, pneumonia remains one of the leading causes
of morbidity and mortality in the pediatric population [169].
CAD4Kids is a computer-aided diagnosis system specifically
designed to assess childhood pneumonia using chest radiographs
as a diagnostic tool [170]. Developed to classify chest x-rays
into 3 categories—pneumonia, another infiltrate, or no
infiltrate—the artificial intelligence algorithm achieved an
impressive area under the curve (AUC) of 0.85, demonstrating
a sensitivity of 76% and a specificity of 80% in correctly
identifying radiographs with pneumonia [169,170].

In addition, a predictive algorithm using pediatric patients’
temperature, respiratory rate, heart rate, and oxygen saturation
has been used to diagnose pneumonia. This algorithm achieved
an impressive AUC of 97.8% with a sensitivity of 96.6% and
a specificity of 96.4%, showcasing the potential of artificial
intelligence in providing accurate pneumonia diagnoses [171].
The simplicity of this algorithm makes it ideally suited for
integration into smartphones or tablets, giving health care
providers convenient access. This user-friendly approach has
the potential to significantly enhance diagnostic capabilities
and improve respiratory care for pediatric patients on a broader
scale [171].

Croup, a pediatric condition known for its distinctive loud
barking cough, has been the focus of a new algorithm developed
to identify affected pediatric patients by analyzing the acoustic
features of their coughs [172]. This algorithm demonstrated a
sensitivity of 92% and specificity of 85%, proving effective in
accurately diagnosing croup. In addition, a study focused on
asthma control used nocturnal cough frequency as a valid
marker, monitoring both audio data and abdominal movements
[173]. The findings revealed a significant increase in cough
count among children with asthma, underscoring the potential
for developing a cough monitoring system. Such a system could
assess the level of asthma control and facilitate the
implementation of more effective management strategies [173].

In another advancement, a DL model has been trained to predict
uncontrolled asthma a week in advance by leveraging a
self-monitoring tool and incorporating patient demographics.
This innovative approach promises to enhance asthma
management by facilitating early intervention and personalized
care [174]. The DL model achieved an AUC of 0.75, with a
sensitivity of 73.8% and a specificity of 71.4%, effectively
predicting uncontrolled asthma a week in advance by using a
self-monitoring tool and patient demographics. The potential
further development of this model promises to provide early
warnings for deteriorating asthma control, enabling timely
interventions and leading to improved respiratory health
outcomes [174].

In neonatal settings, the abundance of data presents a significant
opportunity for ML research [175]. A mature artificial
intelligence model uses heart rate characteristic monitoring to
enhance outcomes for infants with very low birth weight [176].
The study found that neonates monitored using heart rate
characteristics showed improved survival rates and required
fewer days on mechanical ventilators. This underscores the
potential of artificial intelligence applications to optimize care
and improve outcomes for vulnerable neonatal populations
[176].

A notable example of ML model development for predicting
bronchopulmonary dysplasia (BPD) incidence involves using
patient clinical and genetic features, as seen in the BPD risk
gene sets [177]. This study suggests that a model combining
basic clinical risk factors with genetic data can effectively
stratify BPD risk in preterm neonates. The field of predicting
BPD has seen rapid growth over the last decade, highlighted
by the identification of 26 BPD prediction models in 2012 [178].
However, most of these predictors have shown poor performance
and limited promise, underscoring a vital need for further
extensive research and clinical validation [178].

While artificial intelligence applications in pediatric and
neonatal settings offer significant benefits, they also face various
challenges that require careful consideration and resolution
[179]. Ensuring the quality of the data used to train these
systems is crucial, necessitating rigorous assessments to address
issues such as small sample sizes, appropriate handling of
missing values, and data heterogeneity [179].

In summary, while artificial intelligence promises significant
advancements in pediatric and neonatal care, overcoming
obstacles related to data quality and training is crucial for fully
realizing its potential.

Discussion

Principal Findings
Our search was designed to encompass a broad spectrum of
studies, reflecting the diverse applications of artificial
intelligence technologies aimed at enhancing respiratory health
outcomes and advancing the field of respiratory care. In this
domain, artificial intelligence approaches have increasingly
been deployed as tools for diagnosis, classification, and
prediction of mortality outcomes [10]. Notably, artificial
intelligence holds significant potential as a valuable asset in
supporting RTs by enhancing care delivery and managing
respiratory diseases more effectively. However, the successful
integration of these technologies necessitates a robust
understanding of digital interventions and artificial intelligence
principles. It is equally important to promote collaboration with
data specialists and computer scientists to address the challenges
associated with implementing artificial intelligence in respiratory
care [180]. From our review, it appears that artificial intelligence
use and application can eventually elevate the overall quality
of care by minimizing errors across the various areas that RTs
work in.

The use of artificial intelligence in respiratory care involves the
processing of large volumes of personal health information,
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raising significant data privacy concerns. It is crucial to
implement robust data protection measures that comply with
regulations such as the General Data Protection Regulation and
Health Insurance Portability and Accountability Act (HIPAA).
These measures should ensure data anonymization and secure
data storage and transmission [181]. Furthermore, informed
consent is a cornerstone of ethical medical practice and is
particularly pertinent in deploying artificial intelligence
technologies. Patients must be adequately informed about how
their data will be used, the role of artificial intelligence in their
care, and any potential risks associated with artificial intelligence
decision-making [182]. This process must be transparent and
documented, allowing patients to make well-informed decisions
about their care [182]. Furthermore, artificial intelligence
systems can inadvertently perpetuate or amplify biases present
in their training data, which could lead to unequal treatment
outcomes across different demographics. It is imperative to
assess and mitigate these biases by ensuring diverse and
representative datasets. Moreover, continuous monitoring for
biased outcomes and periodic model reassessment should be
institutionalized to safeguard against discrimination [183].
Through these measures, we can explore the ethical complexities
introduced by artificial intelligence in respiratory care, ensuring
that these technologies augment health care delivery without
compromising ethical standards or patient trust.

Implications for Future Work
Our study underscores the importance of integrating training
and education for RTs and students on recent and relevant
artificial intelligence technologies, ensuring their proficiency
in using artificial intelligence tools and analyzing artificial
intelligence–generated insights within clinical settings. It also
highlights the necessity of encouraging interdisciplinary
collaboration among RTs, data scientists, researchers, and
artificial intelligence developers to enhance the development
and implementation of pertinent artificial intelligence
applications and research. These collaborations should aim to
produce practical, effective, and user-friendly solutions that
benefit patients and improve clinical research outcomes. In
addition, it is clear that robust ethical guidelines and data
protection measures are essential to ensure privacy and

compliance with regulations such as the General Data Protection
Regulation and HIPAA, safeguarding patient information.
Furthermore, we recommend conducting research and validation
studies on artificial intelligence applications in the respiratory
care field to ensure that artificial intelligence–driven solutions
are evidence based, accurate, reliable, and beneficial across
various individuals receiving health care from RTs in different
clinical settings.

Limitations
Our study has some limitations. For instance, the literature
review conducted across various areas of respiratory care did
not adhere to a standardized review process, such as systematic
or scoping review, which may introduce potential biases. These
biases could stem from selective inclusion of studies,
nonsystematic search strategies, or subjective interpretation of
findings. Therefore, it is imperative to adopt a well-standardized
review methodology for future studies in each specific area of
respiratory care to minimize these limitations and ensure more
reliable and comprehensive conclusions.

Conclusions
Artificial intelligence applications should complement rather
than replace the decision-making processes of RTs. By serving
as a supportive tool, artificial intelligence enables RTs to
enhance patient care, disease management, and respiratory health
outcomes. As artificial intelligence continues to permeate
medicine, it is imperative for RTs to engage actively in its
evolution, ensuring that their involvement is central to artificial
intelligence development, which is crucial for improving clinical
decision-making. Moreover, as artificial intelligence technology
advances, it is essential to elevate academic standards within
the respiratory care profession, empowering practitioners to
contribute effectively to research and grasp the implications of
artificial intelligence on respiratory care. The integration of
artificial intelligence into health care is irreversible and creates
the need for RTs to positively influence its progression. Active
participation in artificial intelligence development will enable
RTs to expand their clinical capabilities and improve patient
outcomes.
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